• Title/Summary/Keyword: Volumetric Method

Search Result 600, Processing Time 0.035 seconds

Hardware accelerated Voxelization using a Stencil Buffer (Stencil Buffer를 이용한 형상의 복셀화)

  • Jang Dong Go;Kim Gwang Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.266-271
    • /
    • 2002
  • We propose a hardware accelerated voxelization method for various 3D object model such as surface models, solid models, and volumetric CSG models. The algorithm utilizes the stencil buffer that is one of modern Open히 graphics hardware features. The stencil buffer is originally used to restrict drawing to certain portions of the screen. The volumetric representations of given 3D objects are constructed slice-by-slice. For each slice, the algorithm restricts the drawing areas constructed inner region of 3D objects using the stencil buffer, and generates slices of the volumetric representation for target objects. As a result, we can provide volume graphics support for various engineering applications such as multi-axis machining simulation, collision detection and finite element analysis.

  • PDF

Molding Design Factors Optimization for Maximizing Shrinkage Uniformity of Injection Molded Part using Design of Experiments (실험계획법을 이용한 사출품의 균일 수축을 위한 성형 설계인자의 최적화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Yin, Jeong-Je;Lee, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.70-76
    • /
    • 2011
  • This paper presents an optimization procedure for reducing warpage of injection molded part by using a volumetric shrinkage deviation as an objective function. A design of experiments based on orthogonal arrays was used in the optimization procedure, and the entire optimization was performed through a two stage process - a preliminary experimentation and a principal experimentation. Proposed optimization method was applied to the design of a CPU-base part in computer. With the moderate number of experiments, an optimal molding condition for uniform distribution of volumetric shrinkage was obtained, as a result, the warpage of the molded part was significantly reduced.

Improvement of the Volumetric Interferometer using a Lateral Shearing Interferometer (층밀림 간섭계를 이용한 부피간섭계의 개선)

  • Chu J.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.208-211
    • /
    • 2005
  • The volumetric interferometer, which uses the interference of wavefronts emitted from two single mode fibers, measures the target position in 3-D. In this paper, we suggest a new calculation method which doesn't need a non-linear optimization and an initial guess. We find the relationship between the coefficients of the Zernike polynomials for a spherical wavefront and its center and reconstruct a spherical wavefront by using the Zernike polynomials from two interference fringes like a lateral shearing interferometer. The target position can be obtained from the coefficients of the Zernike polynomials of the reconstructed wavefront. We can get the target position in 3-D with $sub-{\mu}m$ errors in a simulation.

  • PDF

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method (선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

Analytical Studies on Basic Creep of Concrete under Multiaxial Stresses

  • Kwon, Seung-Hee;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.465-472
    • /
    • 2003
  • Creep Poisson's ratio reported by previous experimental studies on multiaxial creep of concrete was controversial. The Poisson's ratio is very sensitive to small experimental error that is inevitably induced, and the sensitivity may cause the controversy. It is difficulty to find out the properties on multiaxial creep of concrete. Therefore, a new approach method to analyze the test results is needed to precisely understand the properties on multiaxial creep of concrete. In this study, microplane model is used as a new approach method in analyzing the multiaxial creep test data. The six data sets extracted from the literature are fitted from regression analysis. Double-power law as a model representing volumetric and deviatoric creep evolutions on microplane is used, and six parameters in volumetric and deviatoric compliances are determined on the assumption that the volumetric and deviatoric creep strains are linearly proportional to corresponding stresses. The optimum fits give very accurate description of the test data. The Poisson's ratio calculated from the optimum fits varies with time and does not depends on the stress states, namely, uniaxial, biaxial, and triaxial stress states. Regression analysis is also performed on the assumption that the Poisson's ratio remains constant with titre. The constant Poisson's ratio can be use in practice without serious error.

  • PDF

New Tooth Type Design and Characteristic Analysis for High Density Gerotor Pump (고밀도 제로터 펌프용 신형 치형설계 및 특성해석)

  • Jung, Heon-Sul;Lim, Young Min;Ham, Young-Bok
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.80-86
    • /
    • 2019
  • The gerotor type device is mainly used in low-speed, high-torque hydraulic motors, and is also applied as a small priming hydraulic pump. For this reason, many studies have been conducted to increase the efficiency of the gerotor pump. In this paper, we propose a new tooth profile design method different from the existing method. The new tooth design is made by modifying the tooth surface using the amplification function of the trajectories, created along the inner and outer rolling circles around the base circle. The shape of the mate rotor is then created using rotation simulation techniques. Such shapes are described as hypercloid. The designed hypercloid rotor is compared with the existing trochoid rotor, and the characteristics of the parameters and volumetric displacements are analyzed. Through this process, the optimum design with larger volumetric displacement than the existing rotor is achieved.

Study on the effect of corrosion defects on VIV behavior of marine pipe using a new defective pipe element

  • Zhang, He;Xu, Chengkan;Shen, Xinyi;Jiang, Jianqun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.552-568
    • /
    • 2020
  • After long-term service in deep ocean, pipelines are usually suffered from corrosions, which may greatly influence the Vortex-Induced Vibration (VIV) behavior of pipes. Thus, we investigate the VIV of defective pipelines. The geometric nonlinearity due to large deformation of pipes and nonlinearity in vortex-induced force are simulated. This nonlinear vibration system is simulated with finite element method and solved by direct integration method with incremental algorithm. Two kinds of defects, corrosion pits and volumetric flaws, and their effects of depth and range on VIV responses are investigated. A new finite element is developed to simulate corrosion pits. Defects are found to aggravate VIV displacement response only if environmental flow rate is less than resonance flow rate. As the defect depth grows, the stress responses increase, however, the increase of the defect range reduces the stress response at corroded part. The volumetric flaws affect VIV response stronger than the corrosion pits.

A Study on the Measurement Uncertainty of Pipe Prover (파이프 프루버의 측정불확도에 관한 연구)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1388-1398
    • /
    • 2000
  • A pipe prover is a flowmeter calibrator used in flow measurement field. Gravimetric and volumetric methods were applied to determine the basic volume of the pipe prover. Uncertainty of its basic volume measurement was evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainty of determining the basic volume was estimated from the sensitivity coefficient and the standard uncertainty of independent variables. It was found that the uncertainties of the weighing and volume measurements have dominant influence on that of the basic volume determination. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of the basic volume is shown clearly.

Statistical Analysis of the Position Errors of a Machine Tool Using Ball Bar Test (볼바 측정을 통한 공작기계 위치오차의 통계적 분석)

  • 류순도;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.501-504
    • /
    • 2001
  • The use of error compensation techniques has been recognized as an effective way in the improvement of the accuracy of a machine tool. The laser measurement method for identifying position errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the position errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving position errors using hemispherical helix ball bar test.

  • PDF

Selecting the Optimum Condition of Injection Molding Process by the Taguchi Method and Neural Network (다구찌 방법과 신경회로망을 이용한 사출성형 가공공정의 최적 가공조건 선정에 관한 연구)

  • 홍정의
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Defining the relationship between the quality of Injection molded parts and the process condition is very complicate because of lots of factors are involved and each factor has a non-linearity. With the development of CAE(Computer Aided Engineering) technology, the estimation of volumetric shrinkage of injection mold parts is possible by computer simulation in spite of restricted application. In this research, the Taguchi method md Neural Network are applied for finding optimal processing condition. The percent of volumetric shrinkage is compared on each case and shows neural network can be successfully applied.