• 제목/요약/키워드: Volumetric Method

검색결과 600건 처리시간 0.027초

부피팽창율법을 이용한 침엽수 열처리 목재의 섬유포화점 측정 (FSP measurement of heat-treated softwoods using volumetric swelling method)

  • 강춘원;이승진;강호양
    • 농업과학연구
    • /
    • 제39권2호
    • /
    • pp.183-187
    • /
    • 2012
  • Specimens of five softwood species were heat-treated at three temperature levels of $170^{\circ}C$, $190^{\circ}C$ and $210^{\circ}C$. Their FSP's were measured by the volumetric Swelling Method. Within a species the FSP decreases as the temperature of heat treatment increases. The FSP's of the controls range from 21.0% to 32.5%, while those of the specimens heat-treated at $210^{\circ}C$ from 18.7% to 35.3%. There was no difference of basic density between the heat-treated and control specimens.

디젤기관의 흡기 맥동류가 체적효율에 미치는 영향 (The Effects of Intake Pulsating Flow on Volumetric Efficiency in a Diesel Engine)

  • 강희영;고대권;안수길
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.19-25
    • /
    • 2005
  • Empirical experiments have been undertaken to investigate the effects of Intake Pulsating Flow on volumetric efficiency in a diesel engine. Waves occurs in the manifolds of engine owing to the periodic nature of the induction and exhaust processes caused by piston motion. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow become more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on volumetric efficiency. In this paper the effects of change in length of induction pipes and wide range of engine speed on volumetric efficiency was examined and evaluated. It was found that volumetric efficiency was affected by intake pulsating flow with engine speed and the pipe length. The results obtained were considered by adopting a theory of wave action.

  • PDF

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

고효율 비디오코딩을 위한 입체영상시스템 (Volumetric Image System for High Efficiency Video Coding)

  • 김상현
    • 한국콘텐츠학회논문지
    • /
    • 제16권1호
    • /
    • pp.515-520
    • /
    • 2016
  • 입체영상 시스템은 최근 교육, 3D 영화, 의료 영상 등 다양한 분야에 응용되고 있으나 실용화함에 있어 해결해야할 문제점도 남아있다. 입체영상 디스플레이는 실용화 단계에서 대량의 영상 데이터를 처리해야 하고 실시간 디스플레이를 위해 고효율 비젼 시스템을 설계해야 한다. 입체영상 디스플레이를 위한 스테레오 시스템에서는 움직임 벡터, 변위 벡터 및 오차영상이 전송되며 스테레오 영상 시퀀스를 복원하여 디스플레이를 하게 된다. 그러므로 효율적인 입체영상시스템 설계를 위한 핵심요소는 스테레오 영상간의 효율적인 정합과 강건한 비젼 시스템에 있다. 본 논문에서는 광학 플랫폼 위에 회전이 가능한 회전단과 수평이동이 가능한 단을 설계하고 카메라를 이용하여 순차적으로 스테레오 영상을 취득하여 정합함으로써 정확한 3D 정보를 추출할 수 있는 고효율 비젼 시스템을 제안한다. 제안한 입체영상 시스템 실험결과 간략화된 시스템 구조 보정을 통해 적은 계산량으로 입체영상 디스플레이를 위한 스테레오 정합에러를 최소화할 수 있었다.

체적식 흡수기의 열전달 모델링을 위한 태양 열유속 계산 (Solar Flux Calculation for Heat Transfer Modeling of Volumetric Receivers)

  • 이현진;김종규;이상남;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.223-228
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer modeling. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15 mm charmel length for the charmel radius smaller than 1.5 mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the charmel entrance region is overpredicted while the light penetrates more deeply into the charmel. The developed method will help understand the solar flux when only a part of concentrated light is of interest. Furthermore, if the presented results are applied for heat transfer modeling of multi-channeled volumetric solar receivers, one could examine effects of receiver charmel properties and shape on air temperature profiles.

  • PDF

자유곡면을 가공하는 공작기계 체적오차의 일반화 해석 (A Generalized Analysis of Volumetric Error of a Machine Tool Machining a Sculpture)

  • 고태조
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.39-47
    • /
    • 1995
  • This paper suggests generalize mathematica mode for the benefit of volumetric error analysis of a multi-axis machine tool machining a sculptured surfaces. The volumetric error, in this paper, is defined as a three dimensional error at the cutting point, which is caused by the geometric errors and the kinematic errors of each axis and alignment errors of the cutting tool. The actual cutting position is analyzed based on the form shaping model including a geometric error of the moving carriage, where a form shaping model is derived from the homogeneous transformation matrix. Then the volumetric error is obtained by calculating the position difference between the actual cutting position and the ideal one calculated from a Nonuniform Rational B-Spline named as NURES. The simulation study shows the effectiveness for predicting the behavior of machining error and for the method of error compensation.

  • PDF

배기관의 길이변화가 4사이클 4기통 전기 점화기관의 성능에 미치는 영향에 관한 연구 (A Study on the Effect of Exhaust Pipe Length of 4 Cycle 4 Cylinder S.I. Engine on the Performance)

  • 정수진;김태훈;조진호
    • 한국안전학회지
    • /
    • 제8권3호
    • /
    • pp.3-12
    • /
    • 1993
  • In reciprocating internal combustion engine, engine performance Is greatly affected by volumetric efficiency. For gas flow, the dynamic effects caused by the pressure pulsation have influence on the volumetric efficiency and correlate to the configuration and pipe length of intake-exhaust system. In this study, the analytic investigation of the unstudy flow In exhaust pipe has been carried out by using the method of characteristics to predict volumetric efficiency. In conculusion, it is possible to take account of the exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparision of prediction with experimental datas show a good agreement on the pressure varision in the exhaust pipe which has Influence on the volumetric efficiency and performance of engine.

  • PDF

기준물을 이용한 NC 공작기계의 체적오차 규명 (Volumetric Error Identification for NC Machine Tools Using the Reference Artifact)

  • 김경돈;정성종
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2899-2908
    • /
    • 2000
  • Methodology of volumetric error identification is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geometric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. The proposed method can speed up and simplify volumetric error identification processes.