• Title/Summary/Keyword: Volumetric Method

Search Result 603, Processing Time 0.025 seconds

Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls (철근콘크리트 전단벽의 횡하중-횡변위 관계의 일반화)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.159-169
    • /
    • 2014
  • This study generalizes the lateral load-displacement relationship of reinforced concrete shear walls from the section analysis for moment-curvature response to straightforwardly evaluate the flexural capacity and ductility of such members. Moment and curvature at different selected points including the first flexural crack, yielding of tensile reinforcing bar, maximum strength, 80% of the maximum strength at descending branch, and fracture of tensile reinforcing bar are calculated based on the strain compatibility and equilibrium of internal forces. The strain at extreme compressive fiber to determine the curvature at the descending branch is formulated as a function of reduction factor of maximum stress of concrete and volumetric index of lateral reinforcement using the stress-strain model of confined concrete proposed by Razvi and Saatcioglu. The moment prediction models are simply formulated as a function of tensile reinforcement index, vertical reinforcement index, and axial load index from an extensive parametric study. Lateral displacement is calculated by using the moment area method of idealized curvature distribution along the wall height. The generalized lateral load-displacement relationship is in good agreement with test result, even at the descending branch after ultimate strength of shear walls.

Natural Gas Sorption Using Activated-Carbon with Surface Treatment (활성탄의 표면처리에 의한 천연가스 흡장)

  • Yun, Seok-Min;Kim, Ju-Wan;Im, Ji-Sun;Kim, Shin-Dong;Hong, Ji-Sook;Suh, Jeong-Kwon;Lee, Young-Seak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.434-439
    • /
    • 2006
  • In this study, activated carbon(ACs) have been modified by nitric acid and heat-treatment. The surface and structure properties of ACs were determined by BET surface area, FT-IR pH and acid/base value. The changes in pore structure and surface properties of these modified ACs were correlated with natural gas adsorption which measured by volumetric apparatus at $0^{\circ}C$ and $25^{\circ}C$. The pore textural properties of activated carbon was also characterized by nitrogen adsorption at 77 K. Specific surface area and micropore volume of them were calculated by Langmuir equation and Horvath-Kawazoe method, and chemical properties of surface were measured by FT-IR and titration of acid and base solutions. Pore texture of activated carbons after treatments were not significantly changed. Total acidity increased and basicity of samples decreased. however the basicity increased with heat treatment. The methane adsorption of ACs become different depending on the acid/base value of samples.

An Optimized Mass-spring Model with Shape Restoration Ability Based on Volume Conservation

  • Zhang, Xiaorui;Wu, Hailun;Sun, Wei;Yuan, Chengsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1738-1756
    • /
    • 2020
  • To improve the accuracy and realism of the virtual surgical simulation system, this paper proposes an optimized mass-spring model with shape restoration ability based on volume conservation to simulate soft tissue deformation. The proposed method constructs a soft tissue surface model that adopts a new flexion spring for resisting bending and incorporates it into the mass-spring model (MSM) to restore the original shape. Then, we employ the particle swarm optimization algorithm to achieve the optimal solution of the model parameters. Besides, the volume conservation constraint is applied to the position-based dynamics (PBD) approach to maintain the volume of the deformable object for constructing the soft tissue volumetric model base on tetrahedrons. Finally, we built a simulation system on the PHANTOM OMNI force tactile interaction device to realize the deformation simulation of the virtual liver. Experimental results show that the proposed model has a good shape restoration ability and incompressibility, which can enhance the deformation accuracy and interactive realism.

Measurement of Geometric Errors in a Miniaturized Machine Tool Using Capacitance Sensors (정전용량센서를 이용한 소형공작기계의 기하학적 오차측정)

  • Kweon S.H.;Lee J.H.;Liu Y.;Lim C.B.;Yang S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1733-1736
    • /
    • 2005
  • Many studies have been carried out to produce 3D features in the size range between $10{\mu}m\~10,000{\mu}m$, called Meso-scale. If these miniaturized systems have high relative accuracy and good volumetric utilization, it is possible to manufacture more complex and accurate shapes with various materials as well as there are advantages of reducing energy, space and resources. Due to imperfect components and misalignment in assembly, it is necessary to assess the accuracy of the miniaturized system itself to obtain high relative accuracy. Laser interferometers are widely used to measure geometric errors called as quasi-static errors. For miniaturized system, however, it is difficult to install the required accessories such as optics and the measuring range is limited because of the size of the system and also this method is very expensive. Moreover, it is impossible to measure each error component simultaneously. A new system to measure simultaneously multiple geometric errors is proposed using capacitance sensors. Each error was measured using capacitance sensors and a measurement algorithm was mathematically derived. The experiments show that the proposed measurement system can be used effectively to assess the accuracy of miniaturized system at a low cost.

  • PDF

Stability analysis of an unsaturated slope considering the suction stress (흡입응력을 고려한 불포화 사면의 안정해석법)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.764-771
    • /
    • 2010
  • The stability analysis method of an unsaturated slope considering the suction stress was performed on the infinite sand slope. During drying and wetting processes, the Soil-Water Characteristics Curve (SWCC) of the sand with the relative density of 75% was measured using the automated SWCC apparatus. Also, the Suction Stress Characteristics Curve (SSCC) was estimated. Based on these results, the stability analysis of an unsaturated infinite slope was carried out considering the slope angle, the weathering zone and the relative change in friction angle as a soil depth. According to the result of slope stability analysis, the safety factors of slope were less than 1 when the slope angles were more than $50^{\circ}$. The safety factors of slope tend to increase with increasing the depth from the ground surface. Especially, the safety factors have a tendency to increase and decrease above near the ground water level due to the suction stress. The maximum safety factor of slope in this analysis was occurred at the Air Entry Value (AEV) of drying process. The influence range of suction stress above the ground water level can be found out and can be defined as the funicular zone which means the metric suction range from the air entry point to the point of residual volumetric water content.

  • PDF

Effects of Chemical Admixture on the Quality Characteristics of Grout for Prestressed Concrete (화학 혼화제가 PSC용 그라우트 품질 특성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Ahn, Ki-Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • The study investigates the effects of the content and using method of chemical admixtures such as superplasticizer and viscosity modifying admixture on the fluidity, bleeding ratio, volumetric change and compressive strength of the grout in order to provide basic data for the development of high-quality grout for prestressed concrete. It appeared that the combination of superplasticizer and viscosity modifying admixture decreased the fluidity of grout with small content of superplasticizer. On the contrary, Grout used more than 0.1% of superplasticizer appeared to have significant effect on the improvement of the fluidity. On the other hand, bleeding of grout reduced according to increasing the content of viscosity modifying admixture. Superplasticizer with less than 0.05% had practically no effect on the reduction of bleeding, whereas superplasticizer with more than 0.1% appear to have significant effect on the reduction of bleeding. Also the combination of superplasticizer with 0.15% and viscosity modifying admixture with 0.15% resulted in satisfactory fluidity accompanied with fair reduction of bleeding and shrinkage of the grout.

Development of Gap Searching System for Car Body Assembly by Decomposition Model Representation (분해 모델을 이용한 자동차 차체의 틈새 탐색 시스템 개발)

  • Bae, Won-Jung;Lee, Sung-Hoon;Park, Sung-Bae;Jung, Yoong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.109-118
    • /
    • 2012
  • Large number of part design for aircraft and automobile is preceded by functional or sectional design groups for efficiency. However, interferences and gaps can be found when the parts and sub-assemblies by those design groups are to be assembled. These interferences and gaps cause design changes and additional repair processes. While interference problem has been resolved by digital mockup and concurrent engineering methodology, gap problem has been covered by temporary treatment of filling gap with sealant. This kind of fast fix causes fatal problem of leakage when the gap is too big for filling or the treatment gets old. With this research, we have developed a program to find the gap automatically among parts of assembly so that users can find them to correct their design before manufacturing stage. By using decomposition model representation method, the developed program can search the gap among complex car body parts to be visualized with volumetric information. It can also define the boundary between the gap and exterior empty space automatically. Though we have proved the efficiency of the developed program by applying to automobile assembly, application of the program is not limited to car body only, but also can be extended to aircraft and ship design of large number of parts.

Infiltration Characteristics of Tracer Wetting Front through Effective Pores of Unsaturated Soil (불포화토 유효공극 내 추적자 침윤선 거동 특성 평가)

  • Kim, Man-Il;Nishigaki, Makoto
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.41-47
    • /
    • 2007
  • Geotechnical Phenomena such as landslide, groundwater recharge and groundwater fluctuation due to rainfall can be explain to use a dielectric response and infiltration variation by the movement of a wetting front in the subsurface. The infiltration of a wetting front is infiltrating to the connected pores which are distributed in unsaturated soil. In this study we carried out to laboratory experiment of a vertical infiltration column test using ethanol mix-ing tracer which has same the specific gravity of water. All physical values are detected to use a variation of dielectric constant and calculated to use a dielectric mixing model and tracer test model. This dielectric method measured by each dielectric constant of geological soil porous materials should be of for the geotechnical information and useful a field monitoring technique for detecting the variations of the volumetric water content and the wetting front, which are insignificant the key parameter to understanding the landslide by rainfall.

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site (경주 방폐장의 불균질 배경 단열의 정량화)

  • Cho, Hyunjin;Cheong, Jae-Yeol;Lim, Doo-hyun;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.463-474
    • /
    • 2017
  • Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.

Estimation of ultimate torque capacity of the SFRC beams using ANN

  • Engin, Serkan;Ozturk, Onur;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.939-956
    • /
    • 2015
  • In this study, in order to propose an efficient model to predict the torque capacity of steel fiber reinforced concrete (SFRC) beams, the existing experimental data related to torsional response of beams is reviewed. It is observed that existing data neglects the effects of some parameters on the variation of torque capacity. Thus, an experimental research was also conducted to obtain the effects of neglected parameters. In the experimental study, a total of seventeen SFRC beams are tested against torsion. The parameters considered in the experiments are concrete compressive strength, steel fiber aspect ratio, volumetric ratio of steel fibers and longitudinal reinforcement ratio. The effect of each parameter is discussed in terms of torque versus unit angle of twist graphs. The data obtained from this experimental research is also combined with the data got from previous studies and employed in artificial neural network (ANN) analysis to estimate the ultimate torque capacity of SFRC beams. In addition to parameters considered in the experiments, aspect ratio of beam cross-section, yield strengths of both transverse and longitudinal reinforcements, and transverse reinforcement ratio are also defined as parameters in ANN analysis due to their significant effects observed in previous studies. Assessment of the accuracy of ANN analysis in estimating the ultimate torque capacity of SFRC beams is performed by comparing the analytical and experimental results. Comparisons are conducted in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of efficiency ($E_f$). The results of this study revealed that addition of steel fibers increases the ultimate torque capacity of reinforced concrete beams. It is also found that ANN is a powerful method and a feasible tool to estimate ultimate torque capacity of both normal and high strength concrete beams within the range of input parameters considered.