• Title/Summary/Keyword: Volumetric Heating

Search Result 35, Processing Time 0.027 seconds

NATURAL CONVECTION IN A TRIANGULAR POOL WITH VOLUMETRIC HEAT GENERATION (삼각형 형상의 풀 내에서 열원에 의한 자연대류 수치해석)

  • Kim, Jong-Tae;Park, Rae-Joon;Kim, Hwan-Yeol;Song, Jin-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.302-310
    • /
    • 2011
  • A fluid in an enclosure can be heated by electric heating, chemical reaction, or fission heat. In order to remove the volumetric heat of the fluid, the walls surrounding the enclosure must be cooled. In this case, a natural convection occurs in the pool of the fluid, and it has a dominant role in heat transfer to the surrounding walls. It can augment the heat transfer rates tens to hundreds times larger than conductive heat transfer. The heat transfer by a natural convection in a regular shape such as a square cavity or semi-circular pool has been studied experimentally and numerically for many years. A pool of an inverted triangular shape with 10 degree inclined bottom walls has a good cooling performance because of enhanced boiling critical heat flux (CHF) compared to horizontal downward surface. The coolability of the pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the pool. In this study, turbulence models with modifications for buoyancy effect were validated for unsteady natural convections by volumetric heating. And natural convection in the triangular pool was evaluated by using the models.

  • PDF

The optimum Design of the Multi-flight Screw using Finite Element Analysis (다중날을 가진 스크류의 최적화 설계)

  • 최동열;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.248-256
    • /
    • 2001
  • Capacities of screw are pumping, steady flow of polymer melts, volumetric efficiency, steady volumetric throughout etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. Also the temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. by computation volumetric efficiency increases as rotating velocity increases, flight number increses, and decreases as friction coefficient increases. but volumetric throughout is different :s flight number increases with helix angle variability. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on thermo-mechanical characteristics of screw.

  • PDF

Thermal Analysis of LaNi5 Hydride by Volumetric Method (부피법 자동장치를 이용한 LaNi5 수소화합물의 열분석 장치개발)

  • HAN, JEONG-SEB;KIM, SUNJUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • To apply Sievert's type apparatus to thermal analysis of hydrogen absorption materials, the dehydrogenation of $LaNi_5$ system was investigated. As the initial wt% of hydrogen was increased from 0.44 to 1.24 wt%, the peak temperature of evolution rate shifted to higher temperature. However, with the initial wt% of hydrogen higher than 0.95 wt%, the peak temperature of evolution rate did not change. As the heating rate was increased, the peak temperature increased; the peak temperatures for heating rates 0.5, 1.0 and 1.5 K/min were 262.2, 264.1, and 265.9 K respectively. The Sievert's type automatic apparatus can be successively applied to the thermal analysis of $LaNi_5$ hydride.

Optimum Design of the Screw extruder using Thermo-mechanical Analysis

  • Cho, Seung-Hyun;Kim, Chung-Kyun
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.28-33
    • /
    • 2001
  • Screw conveyors are used extensively in industrial for conveying and elevating materials. Despite their apparent simplicity, the mechanics of the conveying action is very complex. so many engineers depend on experiential data. Capacities of screw are pumping, steady flow of polymer melts, steady volumetric throughput etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. by computation volumetric efficiency increases as rotating velocity increases and decreases as friction coefficient increases. also it decreases with short pitch length. and double flight screw is more effective than single flight screw. The temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on volumetric throughput efficiency of the screw and thermo-mechanical characteristics of screw.

  • PDF

Volumetric Thermal Analysis of Hydrogen Desorption from Mg-13.5wt%Ni Hydride (Mg-13.5wt%Ni 합금 수소화합물의 수소방출에 대한 부피법에 의한 열분석)

  • HAN, JEONG SEB;PARK, KYUNG DUCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.308-317
    • /
    • 2015
  • To investigate the effect of microstructure on the formation of the desorption peak, the volumetric thermal analysis technique (VTA) was applied to the Mg-13.5 wt% Ni hydride system. The sample made by the HCS (hydriding combustion synthesis) process had two kinds of Mg microstructures. Linear heating was started with various constant heating rates. Only one peak was appeared in the case of the small initial hydrogen wt% (0.83 wt%). Yet, two peaks were appeared with increasing initial hydrogen wt% (1.85 and 3.73 wt%) when only Mg was hydrogenated. The first peak was formed through the evolution of hydrogen from $MgH_2$, made by eutectic Mg. The second peak was formed through the evolution of hydrogen from $MgH_2$, made by primary Mg. Therefore, this result shows that the microstructure also has a considerable effect on forming the desorption peak. We have also derived the hydrogen desorption equations by VTA to get apparent activation energy when the rate-controlling step for the desorption of the hydrided system is the diffusion of hydrogen through the ${\alpha}$ phase and the chemical reaction ${\beta}{\rightarrow}{\alpha}$.

HIGH Ra NUMBER NATURAL CONVECTION IN A TRIANGULAR POOL WITH A HEAT GENERATION (열원이 있는 삼각형 풀의 높은 Ra수 자연대류)

  • Kim, Jong-Tae;Park, Rae-Joon;Kim, Hwan-Yeol;Hong, Seong-Wan;Song, Jin-Ho;Kim, Sang-Baik
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.66-74
    • /
    • 2011
  • A fluid in an enclosure can be heated by electric heating, chemical reaction, or fission heat. In order to remove the volumetric heat of the fluid, the walls surrounding the enclosure must be cooled. In this case, a natural convection occurs in the pool of the fluid, and it has a dominant role in heat transfer to the surrounding walls. It can augment the heat transfer rates tens to hundreds times larger than conductive heat transfer. The heat transfer by a natural convection in a regular shape such as a square cavity or semi-circular pool has been studied experimentally and numerically for many years. A pool of an inverted triangular shape with 10 degree inclined bottom walls has a good cooling performance because of enhanced boiling critical heat flux (CHF) compared to horizontal downward surface. The coolability of the pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the pool. In this study, turbulence models with modifications for buoyancy effect were validated for unsteady natural convections by volumetric heating. And natural convection in the triangular pool was evaluated by using the models.

Technical Feasibility of Ethanol-Kerosene Blends for Farm Kerosene Engines (에타놀-석유(石油) 혼합연료(混合燃料)의 농용석유(農用石油)엔진에의 이용(利用)에 관(關)한 연구(硏究))

  • Bae, Yeong Hwan;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-61
    • /
    • 1982
  • As an attempt to reduce the consumption of petroleum resources and to improve the performance of a kerosene engine, a series of experiments was conducted using several kinds of ethanol-kerosene blends under the various compression ratios. The engine used in this study was a single-cylinder, four-cycle kerosene engine having a compression ratio of 4.5. To investigate the feasibility of ethanol-kerosene blends in the original engine, kerosene and blends of 5-percent, 10-percent, and 20-percent-ethanol, by volume, with kerosene were used. And to investigate the feasibility of improving the performance of the kerosene engine, a portion of the cylinder head was cut off to increase the compression ratio up to 5.0 by reducing the combustion chamber volume. Kerosene and blends of 30-percent and 40-percent-ethanol, by volume, with kerosene were used for the modified engine with an increased compression ratio. Variable speed tests at wide-open throttle were also conducted at five speed levels in the range of 1000 to 2200 rpm for each compression ratio and fuel type. Volumetric efficiency, engine torque, and brake specific fuel consumption were determined, and brake thermal efficiency based on the lower heating values of kerosene and ethanol was calculated. The results obtained in the study are summarized as follows: A. Test with the original engine: (1) No abnormal conditions were found when burning ethanol-kerosene blends in the original engine. (2) Volumetric efficiency increased with ethanol concentration in blends. When burning blends of 5-percent, 10-percent, and 20-percent ethanol, by volume, with kerosene, average volumetric efficiency increased 1.6 percent, 2.6 percent, and 4.1 percent respectively, than when burning kerosene. (3) Mean engine torque increased 5.2 percent for 5-percent-ethanol blend, 9.3 percent for 10-percent-ethanol blend, and 11.5 percent for 20-percent-ethanol blend than for kerosene. Increase in engine torque when using ethanol-kerosene blends was due to the improved combustion characteristics of ethanol as well as an increase in volumetric efficiency. (4) Up to ethanol concentration of 20 percent, mean brake specific fuel consumption was nearly constant inspite of the difference in heating value between ethanol and kerosene. (5) Brake thermal efficiency increased 0.3 percent for 5-percent-ethanol blend, 3.8 percent for 10-percent-ethanol blend, and 6.8 percent for 20-percent-ethanol blend than for kerosene. B. Test with the modified engine with an increased compression ratio: (1) When burning kerosene, mean volumetric efficiency, engine torque, and brake thermal efficiency were somewhat lower than for the original engine. (2) Engine torque increased 15.1 percent for 30-percent-ethanol blend and 18.4 percent for 40-percent-ethanol blend than for kerosene. (3) There was no significant difference in brake specific fuel consumption regardless of ethanol concentration in blends. (4) Brake thermal efficiency increased 15.0 percent for 30-percent-ethanol blend and 19. 5 percent for 40-percent-ethanol blend than for kerosene.

  • PDF

Simulation of Plate Deformation by Triangle Heating Process (삼각가열에 의한 판 변형의 시뮬레이션)

  • Chang-Doo Jang;Dae-Eun Ko;Sung-Choon Moon;Yong-Rok Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.66-74
    • /
    • 2001
  • Plate bending process is indispensible in shipbuilding. The process includes press bending process and heating process. Especially the heating process is carried out exclusively by skillful workers. Many researches have been made to automate the heating process. This study was carried out as a fundamental study to develop a efficient analysis method for triangle heating and focused on clarifying the deformation characteristics of plate by triangle heating and essential elements effect on the deformation. In this paper, we proposed an analysis model for thermal-elastic-plastic analysis and simulated the deformation by triangle heating using ANSYS based on the experimental results of Jang et al.(2001). Also, we showed the deformation characteristics more clearly by comparing the deformation due to triangle heating and line heating in case that the total heat input is same. Finally, we investigated the change characteristics of deformation elements according to the volumetric heat input.

  • PDF

Evaluation of Thermal Properties for the Far Infrared Therapy After Microvascular Anastomosis for the Treatment of Circulatory Diseases (미세혈관 문합 후 순환계 질환 개선을 위한 원적외선 치료기의 열적 특성 평가)

  • Yang, Young-Kyu;Oh, Seung-Hyun;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • Far-infrared radiation therapies are becoming more popular for blood circulation disorders, cardiovascular disease, skin diseases, inhibit cancer cell, etc replacing conventional operations. In this research, thermal characteristics of heating part in panel radiators, which is effective on the blood circulation disorders were experimentally analyzed. The heating line supplies heat energy to insulation coatings with heat flux of $150mW/m^2$ in normal status and as a result the coatings reached 20% of the heating line temperature. In other words, the insulation itself could increase surface temperature of heating plates by 20% and raise thermal time constant promote blood circulation effect. We also found that space arrangement of the heating lines was an important factor in designing heating parts and both coefficient of heat conduction and density of the heating plate should be also considered for superimpose of thermal diffusion.

Heat Transfer Characteristics of Direct Contact Heat Exchanger Using Solar Energy (태양열이용 직접접촉 열교환기내의 열전달 특성연구)

  • 강용혁;전명석;윤환기;천원기
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.78-81
    • /
    • 1995
  • In the present study, the spray column type of direct contact heat exchangers are studied experimentally to analyze heat transfer characteristics for solar energy utilization. These experiments are carried out in the line of solar heating system, major results are as follows ; 1) the flow and aspect of working fluid drop for maxium heat transfer 2) efficiency and volumetric heat transfer coefficient of D. C. H. X. with a heavier working fluid are higher than those of D. C. H. X. with a lighter working fluid

  • PDF