• Title/Summary/Keyword: Volume of water retention

Search Result 131, Processing Time 0.021 seconds

Soil-Water Characteristic Curve of Sandy Soils Containing Biopolymer Solution (바이오폴리머를 포함한 모래지반의 흙-습윤 특성곡선 연구)

  • Jung, Jongwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.21-26
    • /
    • 2018
  • Soil-water characteristic curve, which is called soil retention curve, is required to explore water flows in unsaturated soils, relative permeability of water in multi-phase fluids flow, and change to stiffness and volume of soils. Thus, the understanding of soil-water characteristic curves of soils help us explore the behavior of soils inclduing fluids. Biopolymers are environmental-friendly materials, which can be completely degraded by microbes and have been believed not to affect the nature. Thus, various biopolymers such as deacetylated power, polyethylene oxide, xanthan gum, alginic acid sodium salt, and polyacrylic acid have been studies for the application to soil remediation, soil improvement, and enhanced oil recovery. PAA (polyacrylic acid) is one of biopolymers, which have shown a great effect in enhanced oil recovery as well as soil remediation because of the improvement of water-flood performance by mobility control. The study on soil-water characteristic curves of sandy soils containing PAA (polyacrylic acid) has been conducted through experimentations and theoretical models. The results show that both capillary entry pressure and residual water saturation dramatically increase according to the increased concentration of PAA (polyacrylic acid). Also, soil-water characteristic curves by theoretical models are quite well consistent with the results by experimental studies. Thus, soil-water characteristic curves of sandy soils containing biopolymers such as PAA (polyacrylic acid) can be estimated using fitting parameters for the theoretical model.

Oxygen Transfer and Hydraulic Characteristics in Bubble Column Bioreactor Applied Fine Bubble Air Diffusing System (미세기포 산기장치를 적용한 타워형 생물반응기의 산소전달 및 수력학적 특성)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.772-779
    • /
    • 2012
  • For improving performance of conical air diffuser generating fine bubble, both experimental and numerical simulation method were used. After adapting diffusers inner real scale bubble column, suitable for various diffuser submergence, the effect of diffuser submergence on oxygen transfer performance such as Oxygen Transfer Coefficient ($K_{L}a_{20}$) and Standard Oxygen Transfer Efficiency (SOTE) was investigated empirically. As flow patterns for various diffuser number and submergence were revealed throughout hydrodynamic simulation for 2-phase fluid flow of air-water, the cause of the change for oxygen transfer performance was cleared up. As results of experimental performance, $K_{L}a_{20}$ was increased slightly by 7% and SOTE was increased drastically by 39~72%, 5.6% per meter. As results of numerical analysis, air volume fraction, air and water velocity in bioreactor were increased with analogous flow tendency by increasing diffuser number. As diffuser submergence increased, air volume fraction, air and water velocity were decreased slightly. Because circulative co-flow is determinant factor for bubble diffusion and rising velocity, excessive circulation intensity can result to worsen oxygen transfer by shortening bubble retention time and amount.

Effects of Protein and Carbohydrate Supplements on Feed Digestion in Indigenous Malaysian Goats and Sheep

  • Darlis, N. Abdullah;Halim, R.A.;Jalaludin, S.;Ho, Y.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.464-469
    • /
    • 2000
  • Experiments were conducted to determine the effects of soybean meal (SBM) as a source of protein and sago meal (SM) as a source of carbohydrate on in situ and in vivo digestibility of dietary components in four male goats (Kambing Katjang) and four male sheep (Malin) weighing 25-35 kg. Rumen volume, as well as rumen fluid dilution rate were also determined. The animals were housed in single pens with individual feeding and drinking troughs and each animal was fitted with a rumen fistula. They were fed two diets : chopped rice straw+200 g soybean meal (SBM), and chopped rice straw+190 g soybean meal+300 g sago meal (SBM+SM). Rice straw was offered ad libitum. The supplements were isonitrogenous (80 g crude protein/animal/d), but the proportions of dry matter (DM), organic matter (OM), crude fibre (CF), neutral detergent fibre (NDF) and acid detergent fibre (ADF) were lower in the SBM supplement (191, 165, 11, 40, 15 g/animal/d for DM, OM, CF, NDF and ADF, respectively) than in the SBM+SM supplement (445, 423, 25, 102, 38 g/animal/d for DM, OM, CF, NDF and ADF, respectively). Two animals from each species were fed either supplement in a cross-over design in two periods. Each period lasted for four weeks. In situ and in vivo digestibility studies were carried out, followed by the determination of rumen volume and rumen fluid dilution rate. The results showed that straw DM and total DM intakes of goats (average of $48.7g/kg\;W^{0.75}$, $72.7g/kg\;W^{0.75}$, respectively) were significantly (p<0.01) higher than sheep (average of $3.56g/kg\;W^{0.75}$, $61.6g/kg\;W^{0.75}$, respectively), but OM, N and GE intakes were not significantly different between the two animal species. When the effect of supplements was compared, animals fed SBM+SM supplement had significantly (p<0.001) higher DM, OM and GE intakes than animals fed SBM supplement. Potential degradabilities of rice straw DM were significantly (p<0.01) higher in goats (average of 48.8%) than in sheep (average of 46.1 %). The supplements had no significant effect on the potential degradabilities of DM, OM and NDF, but they had a significant (p<0.05) effect on the degradation rates of DM and NDF. The addition of sago meal in the diet reduced the degradation rates of DM and NDF of rice straw in the rumen. Potential degradability of DM of soybean meal was not significantly different between animal species as well as between supplements. Sago meal was highly degradable. At 24 h of incubation in the rumen, 90-95% of DM loss was observed. There was a significant interaction between animal species and supplements in the in vivo digestibility of ADF and GE. In animals fed SBM supplement, the in vivo digestibility of ADF was significantly (p<0.05) higher in goats ($50.6{\pm}4.22%$) than in sheep ($44.4{\pm}3.21%$), but digestibility of GE was significantly (p<0.05) higher in sheep ($70.2{\pm}1.93%$) than in goats ($63.0{\pm}3.07%$). The digestibility values of CP and OM were significantly (p<0.05) higher in sheep when compared to goats. Animals fed SBM+SM supplement showed significantly (p<0.05) higher DM and OM digestibility values than animals fed SBM supplement, but digestibility values of CP were significantly (p<0.05) higher in animals fed SBM supplement. Differences in in vivo digestibility values of CF and NDF were not significantly different between animal species or supplements. Water intake, rumen volume ($1/kg\;W^{0.75}$), rumen fluid dilution rate and mean retention time were similar between the two animal species. However, rumen fluid dilution rate and mean retention time was significantly (p<0.01) affected by supplements. Animals fed SBM+SM had faster rumen fluid dilution rate and consequently shorter mean retention time.

Studies on the Coating Structure and Printability of Coated Paper(III) - Effect of the interaction with pigments and ionic latices on the property of coated paper - (도공층 구조 및 도공지의 인쇄적성에 관한 연구(제3보) - 도공용 안료와 이온성 라텍스와의 상호작용이 도공지 품질에 미치는 영향 -)

  • Park, Kyu-Jae;Lee, Yong-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.73-81
    • /
    • 1999
  • This paper was intended to evaluate the effect of the blending condition of pigments on the packing structure of coating color and the interaction between pigments and latices on the optical and interior properties of coated paper. It has been studied many ways to modify the coating structure to induce the interaction among coating components as followings ; 1) to use dispersant for pigment, 2) to control the charge density and the type of surface charge of latex, 3) to support the water retention by adding water retention agent or flow modifier. This paper was performed through the introduction of interaction between pigments which were two kinds of clays and one precipitated calcium carbonate(PCC) and ionic latices of which anionic and amphoteric respectively under the certain blending condition of pigments where their blending ratio of clays to calcium carbonate was 70pph to 30pph. The reason is that packing volume of pigments was highest in that region and thixotropical behavior appears in measuring rheology of coating color. We measured the properties of coating color, interaction with pigments and latex, and properties of coated paper and its printability. As a results, we could find out that amphoteric latex had a great influence on the interaction with pigments, especially clays, no matter what grade and also affected the coating structure significantly in case that this blending condition was 70(clays) to 30(PCC). It produced a powerful effect on the forming of bulky and smooth coating structure and in turn improved the printability of coated paper.

  • PDF

Research on Design Capacity Evaluation of Low Impact Development according to Design Criteria (저영향개발 시설 설계 기준에 따른 용량 평가 방법 연구)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • The interest in LID facilities is increasing worldwide for recovery of natural water cycle system to destroy by urbanization. However, problems are raised when installation of LID because comprehensive analysis about design capacity adequacy of LID facilities was not conducted completely. In this research, removal efficiency and design volume adequacy of LID facilities were analyzed based on rainfall monitoring data in four LID facilities(Vegetated Swale, Vegetative Filter Strip, Bio-Retention and Permeable Pavement). As a result, group of LID facility designed on WQV was shown higher flow(37%) and pollutants(TSS, BOD, TN and TP) removal efficiencies(20 ~ 37%) than group of LID facility designed on WQF. SA/CA graph was drawn for evaluation of design volume adequacy based on rainfall monitoring data. In this SA/CA graph, coefficient of determination show over 0.5 in all parameter, especially, Flow and TP were show over 0.95. And, 'SA/CA & L/CA' graph considering difference of structure mechanism in LID facility suggested in this research was confirmed that improved coefficient of determination in flow, TSS and TP than SA/CA graph. According to this research results, feasibility of applying 'SA/CA & L/CA' graph for evaluation of design volume adequacy in LID facility, and it is necessary to follow up research for generalization and normalization.

An Analytical Method of Formaldehyde in Exhaust Gases from Industrial Facilities using a HPLC under Isocratic Conditions (Isocratic 조건하에서 HPLC를 이용한 산업시설 배출가스 중 포름 알데하이드 분석)

  • Kim, Jun-Pyo;Park, Seung-Shik;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.616-624
    • /
    • 2018
  • In this study, a previous DNPH (2,4-dinitrophenylhydrazine) coupled with high performance liquid chromatography (HPLC) method to measure the concentration of formaldehyde in ambient and source environments has been improved. To improve the disadvantage of the previous HPLC method, an appropriate composition ratio of mobile phase (water: acetonitrile (ACN)) was determined and an isocratic analysis was conducted. Furthermore, limit of detection (LOD), limit of quantitation(LOQ), accuracy, and precision were investigated to verify the reliability of the analytical conditions determined. Finally, samples of exhaust gases from five different industrial facilities were applied to HPLC analytial method proposed to determine their formaldehyde concentrations. The appropriate composition ratio of the mobile phase under the isocratic condition was a mixture of water(40%) and ACN(60%). As the volume fraction of the organic solvent ACN increases, retention time of the formaldehyde peak was reduced. Detection time of formaldehyde peak determined using the proposed isocratic method was reduced from 7 minutes(previous HPLC method) to approximately 3 minutes. LOD, LOQ, accuracy, and precision of the formaldehyde determined using standard solutions were 0.787 ppm, 2.507 ppm, 93.1%, and 0.33%, respectively, all of which are within their recommended ranges. Average concentrations of the formaldehyde in five exhaust gases ranged from 0.054 ppm to 1.159 ppm. The lowest concentration (0.054 ppm) was found at samples from waste gas incinerator in a bisphenol-A manufacturing plant. The highest was observed at samples from the absorption process in manufacturing facilities of chemicals including formaldehyde and hexamine. The analytical time of the formaldehyde in ambient air can be shortened by using the isocratic analytical method under appropriate mobile phase conditions.

The Positional Effect of Solute Functional Group among Positional Isomers of Phenylpropanol in Hydroxyl Group-Solvent Specific Interactions in Methanol/Water Mixed Solvents Monitored by HPLC

  • Cheong, Won-Jo;Ko, Joung-Ho;Kang, Gyoung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1246-1250
    • /
    • 2005
  • We have evaluated the hydroxyl group-solvent specific interactions by using a Lichrosorb RP18 stationary phase and by measuring the retention data of carefully selected solutes in 50/50, 60/40, 70/30, 80/20, and 90/10(v/v%) methanol/water eluents at 25, 30, 35, 40, 45, and 50 ${^{\circ}C}$. The selected solutes are 3 positional isomers of phenylpropanol, that is, 1-phenyl-1-propanol, 1-phenyl-2-propanol, and 3-phenyl-1-propanol. There exist clear discrepancies in ${\Delta}H^o$ (solute transfer enthalpy from the mobile to the stationary phase) and $T{\Delta}S^o$ (solute transfer entropy) among positional isomers. The difference in ${\Delta}H^o$ and $T{\Delta}S^o$ between secondary alcohols (1-phenyl-1-propanol and 1-phenyl-2-propanol)is negligible compared to the difference between the primary alcohol (1-phenyl-3-propanol) and secondary alcohols. The $T{\Delta}S^o$ values of 3-phenyl-1-propanol are close to those of butylbenzene while the $T{\Delta}S^o$ values of secondary alcohols are close to those of propylbenzene. The difference in ${\Delta}{\Delta}H^o$ (specific solute-mobile phase interaction enthalpy) between the primary alcohol and the secondary alcohol decreases with increase of methanol content in the mobile phase. A unique observation is an extremum for 1-phenyl-3-propanol in the plot of $T{\Delta}{\Delta}S^o$ vs. methanol volume %. The positive sign of $T{\Delta}{\Delta}S^o$ of 3-phenyl-1-propanol implies that the entropy of 3-phenyl-1-propanol is greater than that of the hypothetical alkylbenzene (the same size and shape as phenylpropanol) in the mobile phase.

Evaluation of the Septic Tank Performance in the Sewage Treatment Area and Suggestion of an Optimum Model (하수처리구역내 단독정화조의 성능평가 및 최적 모형의 제안)

  • Lim, Bong-Su;Jung, Keum-Hee;Wang, Ze-Jie
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.403-409
    • /
    • 2007
  • This study was carried out to recommend the systematic improving practice for the effective operation of septic tank, and the evaluation of its BOD and nutrient removal efficiency depending on process, the survey of characteristics of FRP material, and the suggestion of optimum septic tank model within sewage treatment area. The average BOD concentration and BOD removal efficiency of septic tank which was carried out the cleaning periodically in 63.9 mg/L and 77.8%, shows good quality better than the septic tank which was not carried out the cleaning regularly. Maximum load of tensile, flexural and compressive strength increased in proportion to its thickness, and the contents standard 25% of glass fiber required upgrade over than 30%. Configuration and performance for the optimum of the septic tank suggests that over $0.75m^3$ of the effective total volume, adding to over $0.25m^3$ a man for more than 5 men of the treated person, retention time should be within one day. Improving plans about facility and materials quality of the septic tank have an obligation that protective wall ought to install on the concrete bottom and side faces to prevent crumble or transform from loading of the ground or upper part of the structure on the tank setting. And it is eliminated the uneffective resisting pressure and it keeps off circulate imperfect products by strengthening of the test methods such as stretching strength, pressing strength, glass fiber contents and thickness.

A Feasibility Study for Renewable Energy from Sewage Sludge Biogas (하수슬러지 Biogas의 신재생에너지화 타당성 연구)

  • Kang, Ho;Lee, Hye Mi;Cho, Sang Sun;Park, Sun Uk;Jeong, Ji Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.754-760
    • /
    • 2010
  • This study was carried out not only to evaluate optimal operating condition to increase biogas production, but also to estimate feasibility of renewable energy from anaerobic digester of sewage sludge. Semi- continuous Fed and Mixed Reactors (SCFMRs) were operated in various condition to quantify the reactor variables. The result of SCFMR operation showed that the biogas productivity and total volatile solids (TVS) removal of total solids (TS) 4% reactor at hydraulic retention time (HRT) 20 days with Organic Loading Rate (OLR) of $1.45kg/m^3-d$ were $0.39m^3/m^3-d$ and 26.7%, respectively which was two times higher than that of TS 2.5% reactor. Consequently the daily biogas production of $20,000m^3$ would be possible from the total volume of $52,000m^3$ of anaerobic digesters of the municipal wastewater treatment plant in D city. In feasibility study for the Biogas utilization, combined heat and power system (CHP) and CNG gasification were examined. In case of CHP, the withdrawal period of capital cost for gas-engine (GE) and micro gas-turbine (MGT) were 7.7 years and 9.1 years respectively. biogas utilization as Clean Natural Gas (CNG) shows lower capital cost and higher profit than that of CHP system. CNG gasificaion after biogas purification is likely the best alternative for Biogas utilization which have more economic potential than CHP system. The withdrawal period of capital cost appeared to be 2.3 years.

Effect of Ozone Injection on Dewaterability and Thickening of Sewage Sludge (하수 슬러지 농축 및 탈수성에 미치는 오존의 영향)

  • Hwang, Kyeoung-Sa;Kim, Moon-Ho;Bae, Yoon-Sun;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.800-808
    • /
    • 2005
  • It is required to propose an alternatives for appropriate sludge treatment owing to persistent construction of sewage treatment plant and increase of sewage sludge quantity. In order to treat sludge more efficiently, the methods which reduce the cost of sludge treatment have been studied such as sludge reduction and conditioning. Especially ozone treatment reduces solid quantity and improves separation of solid-liquid at the same time. Therefore ozone treatment have a positive effect on reduction and stabilization of sludge. So, this study applied ozone to sewage sludge and induced cell destruction of sludge. By comparing with the correlation between thickening and dewatering, and evaluating moisture content and solubilization of cake, this study verificates the effect of process improvement for ozone pre-treatment. In J-STP case, according to ozone dose solid flux increased about 12 times from $1kg/m^2{\cdot}h$ to $12kg/m^2{\cdot}h$. Also this plant were capable to shorten thickening time from 40 minutes to 6~7 minutes. Thus it is expected to reduce volume and retention time of thickener. On pH effect factor, dewatering at pH4 was more than at pH11, $3.05{\times}10^{11}$ and $3.82{\times}10^{11}(m/kg)$. But effect of pH was analogous to ozone, $2.81{\times}10^{11}(m/kg)$. The effect of pH on thickening was similar to law sludge, $0.68(kg/m^2{\cdot}h)$, and the effect of ozone injection on thickening was the biggest, $3.45(kg/m^2{\cdot}h)$. The COD solubilization rate improved from about 5 to 30%. So it is judged that we are able to utilize most solubilized sludge to another sewage treatment plants.