• Title/Summary/Keyword: Volume of pores

Search Result 221, Processing Time 0.022 seconds

Quality Characteristics of Sponge Cakes with Various Sugar Alcohols (당알코올 첨가 스폰지 케이크의 품질특성)

  • Lee, Jin-Kyung;Oh, Myung-Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.5
    • /
    • pp.615-624
    • /
    • 2010
  • This study was conducted to investigate the use of sugar alcohols as alternative sweeteners for replacing sucrose in sponge cake. The sponge cakes were prepared with only sucrose or a 50% replacement of sucrose with various sugar alcohols (erythritol, sorbitol, and xylitol). The specific gravity of cake batter containing only sucrose was significantly higher and the viscosity was significantly lower than those containing sugar alcohol (p<0.001). Among sugar alcohols, xylitol was the most similar to sucrose. The thermal characteristics, as assessed by differential scanning calorimetry, showed that sucrose delayed gelatinization of cake batter more than sugar alcohol, as the onset temperature and the peak temperature of cake batter containing only sucrose were higher than those containing sugar alcohol. The moisture content of cake containing sorbitol was the highest and that containing only sucrose was the lowest among cakes. The specific volume of cakes containing only sucrose and xylitol were higher and the baking loss rate of those were lower than other sugar alcohols. The volume and symmetry index of cake containing only sucrose were the highest among cakes (p<0.001), and xylitol was similar to sucrose for the above indices. The redness (a) and yellowness (b) values of crust containing only sucrose were significantly higher than those containing sugar alcohols (p<0.001). The a and b values of crumb containing erythritol were the lowest among cakes, showing a pale yellowish color. The microstructure, as assessed by scanning electron microscopy, showed that the cake containing only sucrose had more uniformly and finely distributed pores and a smoother cross section than that containing sugar alcohols. Cake containing xylitol was similar to cake containing only sucrose. Hardness, chewiness, and gumminess of cake containing only sucrose were higher than those containing sugar alcohols, whereas the adhesiveness of cakes containing sugar alcohols were higher than those containing only sucrose (p<0.01). Among sugar alcohols, xylitol was the most similar to sucrose in textural properties. In a sensory quality test, the tenderness and moistness of cakes containing sorbitol and erythritol were higher than those containing only sucrose and xylitol. The overall acceptance of cakes containing xylitol and only sucrose were higher than those containing sorbitol and erythritol (p<0.001). Thus, xylitol is more appropriate as a 50% replacement for sucrose than erythritol and sorbitol when preparing sponge cake.

Mandibular reconstruction with a ready-made type and a custom-made type titanium mesh after mandibular resection in patients with oral cancer

  • Lee, Won-bum;Choi, Won-hyuk;Lee, Hyeong-geun;Choi, Na-rae;Hwang, Dae-seok;Kim, Uk-kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.35.1-35.7
    • /
    • 2018
  • Background: After the resection at the mandibular site involving oral cancer, free vascularized fibular graft, a type of vascularized autograft, is often used for the mandibular reconstruction. Titanium mesh (T-mesh) and particulate cancellous bone and marrow (PCBM), however, a type of non-vascularized autograft, can also be used for the reconstruction. With the T-mesh applied even in the chin and angle areas, an aesthetic contour with adequate strength and stable fixation can be achieved, and the pores of the mesh will allow the rapid revascularization of the bone graft site. Especially, this technique does not require microvascular training; as such, the surgery time can be shortened. This advantage allows older patients to undergo the reconstructive surgery. Case presentation: Reported in this article are two cases of mandibular reconstruction using the ready-made type and custom-made type T-mesh, respectively, after mandibular resection. We had operated double blind peer-review process. A 79-year-old female patient visited the authors' clinic with gingival swelling and pain on the left mandibular region. After wide excision and segmental mandibulectomy, a pectoralis major myocutaneous flap was used to cover the intraoral defect. Fourteen months postoperatively, reconstruction using a ready-made type T-mesh (Striker-Leibinger, Freibrug, Germany) and iliac PCBM was done to repair the mandible left body defect. Another 62-year-old female patient visited the authors' clinic with pain on the right mandibular region. After wide excision and segmental mandibulectomy on the mandibular squamous cell carcinoma (SCC), reconstruction was done with a reconstruction plate and a right fibula free flap. Sixteen months postoperatively, reconstruction using a custom-made type T-mesh and iliac PCBM was done to repair the mandibular defect after the failure of the fibula free flap. The CAD-CAM T-mesh was made prior to the operation. Conclusions: In both cases, sufficient new-bone formation was observed in terms of volume and strength. In the CAD-CAM custom-made type T-mesh case, especially, it was much easier to fix screws onto the adjacent mandible, and after the removal of the mesh, the appearance of both patients improved, and the neo-mandibular body showed adequate bony volume for implant or prosthetic restoration.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.5-13
    • /
    • 2007
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925. Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower one and the motion of grout is also a function of formation permeability. Viscosity of pout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this paper, characteristics of new cement grout material that has been developed recently are studied: injectable volume of new grout material is tested in two different grain sizes of sands; and the method to calculate injectable volume of grout Is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to increase as an exponential function of time. And lumped parameter $\delta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressures. Injection test results show that grout penetration rate is decreased by the increase of grout viscosity and clogging phenomena.

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor (Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응)

  • An, Jae-Yong;Lee, Choul-Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.

Application of Oyster Shells as Aggregates for Concrete (콘크리트용 골재로서 굴패각의 활용)

  • 어석홍;황규한;김정규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.540-548
    • /
    • 2002
  • The purpose of this study is to analyze the application of oyster shells (OS) as aggregates for concrete. For this purpose, five reference mixes with W/C ratios of 0.4 ∼0.6 at intervals of 0.05 were used. The replacement proportion of OS was varied with ratios of 0, 10, 30, 50 and 100% by volume of fine or coarse aggregate in the reference mixes. OS was washed and crushed for using as aggregates. New chemical reaction between crushed OS aggregate and cement paste was tested through XRD and SEM analysis. Two strength properties (compressive and flexural) were considered. Strength tests were carried out at the ages of 1, 3, 7, 14 and 28 days. The variations of workability, air content and density, drying shrinkage of the specimens with different proportions of OS were also studied. Finally, the hollow concrete block using OS as a substitute material for fine aggregate was made for testing the application of OS. Experimental results showed that my new chemical reaction did not occur due to mixing OS in concrete. The workability and strengths decreased with increase in proportion of OS. The same trend was observed in density and unit weight, but air content increased due to the inherent pores in OS, which showed a possibility to produce light weight concrete with low strength by using OS as coarse aggregates for concrete. Tests on hollow concrete block showed that the compressive strength and absorption ratio were satisfied with quality requirements when the fine aggregate was substituted with OS up to 50% in volume.

The Preparation of Activated Carbon from Coffee Waste: ZnCl2-Activation (커피폐기물을 이용한 활성탄의 제조: ZnCl2-활성화)

  • You, S.H.;Kim, H.H.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.509-515
    • /
    • 1998
  • Activated coffee chars were prepared from coffee waste by chemical activation with zinc chloride. In this study, the following processes were carried out ; roasting step, carbonization step, chemical activation step, and washing and drying step. The roasting step of coffee waste was carried out at $300{\sim}400^{\circ}C$ for 10 minutes. The optimum condition of carbonization was at $650^{\circ}C$ for 1 hour. The most important parameter in chemical activation of coffee char was found to be the chemical ratio of activation agents. Activated coffee chars prepared by various activation methods were characterized in terms of the nitrogen BET surface area, the BJH pore volume and pore size distribution at 77 K. The $N_2$-BET surface areas and total pore volume of coffee chars prepared by the chemical activation with $ZnCl_2$ were determined as about $1110{\sim}1580m^2/g$ and $0.51{\sim}0.81cm^3/g$, respectively. Scanning Electron Microscopy (SEM) was used to observe the porosity and surface of activated coffee chars. From the results of SEM analysis, it was shown that active surface and many pores were formed after the chemical activation. The preparation of the activated coffee char from coffee waste was successfully carried out, which previews a possibility for exploitation of resources by recycling the waste.

  • PDF

Quality Characteristics of Muffins containing Beet Powder (비트 가루 첨가량에 따른 머핀의 품질특성)

  • Seo, Eun-Ok;Ko, Seng-Hye
    • Culinary science and hospitality research
    • /
    • v.20 no.1
    • /
    • pp.27-37
    • /
    • 2014
  • This study examines the quality characteristics of the muffins made by adding 3%, 6%, and 9% of beet powder, comparing with the reference group. The result showed that there has been no significant difference in the ash content from the groups added with 3% and 9% of beet powder. The height of muffins appeared to be 4.7~5.0 cm, which didn't show any significant difference among the samples. The volume of beet muffins has shown significant difference among the samples (p<0.001). From the measurement result by scanning electron microscope (SEM), the samples had thick cellular walls and coarse pores because there was less gluten content with increased beet powder. From the chromaticity measurement result, L value and b-value decreased, while a-value increased with increased beet powder. From the texture measurement result, hardness increased with increased beet powder. Adhesiveness appeared to be getting lower with increased beet powder. Also, there was significant difference among the samples for cohesiveness (p<0.001). Gumminess got higher in the samples added with 3% and 6% of beet powder, and the highest chewiness was shown in the sample group added with 3% of beet powder. From the sensory evaluation result, overall acceptance has appeared in order of 6% > 9% > 3% > 0%.

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.

Synthesis of Ceramic Support for Immobilization of Microorganisms Using Fly Ash (석탄회를 이용한 미생물 고정화 세라믹 담체 제조)

  • Shin, Dae-Yong;Han, Sang-Mok;Choi, Shin-Geon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.857-862
    • /
    • 2002
  • Porous ceramic supports with immobilized microorganisms for the water purifier were synthesized by firing green compacts of mixed powder comprising of fly ash, bentonite and an additive of yeast powder at 800∼1,000$^{\circ}C$ for 1h and the pore and mechanical properties of specimens were investigated. The compressive strength was increased in FB (Fly Ash + Bentonite) specimens while pore properties was decreased with increasing the bentonite content and sintering temperature. The compressive strength, bulk density, apparent density, porosity, mean pore size, pore volume and specific surface area of FB specimens at 800∼1,000$^{\circ}C$ were 89.6∼128.9 kgf/$cm^2$, 1.25∼1.43, 1.61∼1.78, 27.2∼62.2%, 7.9∼25.6 ${\mu}m$, 8.9∼$22.2{\times}10^{-5}\;cm^3/g$ and 35.2∼134.3 $m^2/g$, respectively. The pore properties of FBY (FB+yeast powder) specimens were superior to that of FB specimens, however compressive strength was decreased with increasing yeast powder content. The overall properties of 9F1B1Y (9F1B+10% of yeast powder) specimens at 900$^{\circ}C$ for 1 h were 98.7 kgf/$cm^2$, 1.20, 1.67, 68.1%, 48.9 ${\mu}m$, $29.5{\times}10^{-5}\;cm^3/g$ and 152.2 $m^2/g$, respectively. In this study, it was revealed that 9F1B1Y specimen demonstrated better S. saprophyticus adherence properties n their surface pores. Consequently, the microorganisms immobilized on porous ceramic supports showed better water purifying performance with many pores and adequate strength.

Numerical Modeling of Dehydration of Subducting Slab and Behavior of Expelled Water: A Preliminary Study (섭입해양판의 탈수 및 탈수된 물의 거동 수치모델링: 선행 연구)

  • Lee, Changyeol
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.198-206
    • /
    • 2018
  • In this preliminary study, dehydration of the subducting slab and behavior of the expelled water are numerically modeled using 2-dimensional model scheme. The hydrated minerals in the oceanic crust of the subducting slab experience dehydration by increases in temperature and pressure and expel their water into the overlying mantle wedge. Behavior of the expelled water is governed by both the corner flow in the mantle wedge and porous flow of the expelled water through the pores of the mantle minerals. The effects of convergence rate and age of the subducting slab as well as grain size of the minerals on the dehydration of the subducting slab and behavior of the expelled water are evaluated. The water solubility of the oceanic crust measured from the laboratory experiments is considered for modeling dehydration of the oceanic crust. The model calculations show most of the hydrated minerals in the oceanic crust is dehydrated by a depth of 100 km and the effects of the convergence rate and age of the subducting slab on the dehydration of the subducting slab and behavior of the expelled water are not significant. The larger grain size allows faster porous flow of the expelled water through the oceanic crust, mantle wedge and overlying continental crust and reduces the volume fraction of the expelled water there. The developed technique will be used for future studies on arc volcanism and has a potential implication for the other fields such as seismic tomographic study.