• Title/Summary/Keyword: Volume of fluid method

Search Result 650, Processing Time 0.032 seconds

Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders

  • Mo, Weihua;Liu, Philip L.F.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.20-28
    • /
    • 2009
  • In thus paper we validate a numerical model for wave-structure interaction by comparing numerical results with laboratory data. The numerical model is based on the Navier-Stokes (N-S) equations for an incompressible fluid. The N-S equations are solved by a two-step projection finite volume scheme and the free surface displacements are tracked by the volume of fluid (VOF) method The numerical model is used to simulate solitary waves and their interaction with a group of slender vertical piles. Numerical results are compared with the laboratory data and very good agreement is observed for the time history of free surface displacement, fluid particle velocity and wave force. The agreement for dynamic pressure on the cylinder is less satisfactory, which is primarily caused by instrument errors.

Numerical simulation of wave slamming on 3D offshore platform deck using a coupled Level-Set and Volume-of-Fluid method for overset grid system

  • Zhao, Yucheng;Chen, Hamn-Ching;Yu, Xiaochuan
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.245-259
    • /
    • 2015
  • The numerical simulation of wave slamming on a 3D platform deck was investigated using a coupled Level-Set and Volume-of-Fluid (CLSVOF) method for overset grid system incorporated into the Finite-Analytic Navier-Stokes (FANS) method. The predicted slamming impact forces were compared with the corresponding experimental data. The comparisons showed that the CLSVOF method is capable of accurately predicting the slamming impact and capturing the violent free surface flow including wave slamming, wave inundation and wave recession. Moreover, the capability of the present CLSVOF method for overset grid system is a prominent feature to handle the prediction of wave slamming on offshore structure.

Transient filling simulations in unidirectional fibrous porous media

  • Liu, Hai Long;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.71-79
    • /
    • 2009
  • The incomplete saturation and the void formation during the resin infiltration into fibrous porous media in the resin transfer molding process cause failure in the final product during its service. In order to better understand flow behavior during the filling process, a finite-element scheme for transient flow simulation across the micro-structured fibrous media is developed in the present work. A volume-of- fluid (VOF) method has been incorporated in the Eulerian frame to capture the evolution of flow front and the vertical periodic boundary condition has been combined to avoid unwanted wall effect. In the microscale simulation, we investigated the transient filling process in various fiber structures and discussed the mechanism leading to the flow fingering in the case of random fiber distribution. Effects of the filling pressure, the shear-thinning behavior of fluid and the volume fraction on the flow front have been investigated for both intra-tow and the inter-tow flows in dual-scale fiber tow models.

Optimization of a Pin Fin with inside Fluid (based on Fixed Fin Volume) (내부유체를 가진 Pin Fin의 최적화 (고정된 핀 체적 기준))

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.3-7
    • /
    • 2009
  • A cylindrical pin fin with inside fluid is optimized based on fixed fin volume by using the one dimensional analytic method. Heat loss from the fin and the pin fin radius for fixed fin volume is presented as a function of the fin length. Temperature variation of the fin with the variation of ambient and inside fluid convection characteristic numbers and fin base thickness is listed. The maximum heat loss at the practical fin length and corresponding optimum fin length and radius are presented as a function of fin base thickness, inside convection characteristic number, fin volume and ambient convection characteristic number. One of the results shows that the optimum pin fin shape becomes relatively fatter as the fin volume increases.

  • PDF

Numerical simulation of deformable structure interaction with two-phase compressible flow using FVM-FEM coupling (FVM-FEM 결합 기법을 이용한 압축성 이상 유동과 변형 가능한 구조물의 상호작용 수치해석)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • We conduct numerical simulations of the interaction of a deformable structure with two-phase compressible flow. The finite volume method (FVM) is used to simulate fluid phenomena including a shock wave, a gas bubble, and the deformation of free surface. The deformation of a floating structure is computed with the finite element method (FEM). The compressible two-phase volume of fluid (VOF) method is used for the generation and development of a cavitation bubble, and the immersed boundary method (IBM) is used to impose the effect of the structure on the fluid domain. The result of the simulation shows the generation of a shock wave, and the expansion of the bubble. Also, the deformation of the structure due to the hydrodynamic loading by the explosion is identified.

The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid

  • Ghaitani, M.M.;Majidian, A.;Shokri, V.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.103-113
    • /
    • 2020
  • This paper deal with the critical fluid velocity response of nanocomposite pipe conveying fluid based on numerical method. The pressure of fluid is obtained based on perturbation method. The motion equations are derived based on classical shell theory, energy method and Hamilton's principle. The shell is reinforced by nanoparticles and the distribution of them are functionally graded (FG). The mixture rule is applied for obtaining the equivalent material properties of the structure. Differential quadrature method (DQM) is utilized for solution of the motion equations in order to obtain the critical fluid velocity. The effects of different parameters such asCNT nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios and internal fluid are presented on the critical fluid velocity response structure. The results show that with increasing the CNT nanoparticles, the critical fluid velocity is increased. In addition, FGX distribution of nanoparticles is the best choice for reinforcement.

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.

Numerical Study of Unsteady Mixed Convection in a Cavity with High Viscous Fluid (캐비티 내 고 점성유체의 비정상 흔합대류에 관한 수치해석적 연구)

  • Bae, D.S.;Cai, Long Ji
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.11-17
    • /
    • 2009
  • A numerical study of unsteady mixed convection in a cavity with high viscous fluid is presented. Finite volume method was employed for the discretization and PISO algorithm was used for calculating pressure term. The parameters governing the problem are the Rayleigh number ($10^3\;{\leq}\;Ra\;{\leq}\;10^5$), the Reynolds number (0 < Re $\leq$ 1), and the aspect ratio (0.5 $\leq$ AR $\leq$ 2). The fluid used is silicon oil, a high prandtl number fluid, Pr = 909.1. The results show velocity vectors and temperature distributions. It is found that the periodic flows in a cavity are observed at very low Reynolds numbers, and the period of periodic flow decreases with increasing Reynolds and Rayleigh numbers, and increases with increasing aspect ratio. Also, the Reynolds number range of periodic flow increases with increasing Rayleigh numbers and aspect ratio.

  • PDF

Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.21-31
    • /
    • 2018
  • In this work, the dynamic stability of carbon nanotubes (CNTs) reinforced composite pipes conveying pulsating fluid flow is investigated. The pipe is surrounded by viscoelastic medium containing spring, shear and damper coefficients. Due to the existence of CNTs, the pipe is subjected to a 2D magnetic field. The radial induced force by pulsating fluid is obtained by the Navier-Stokes equation. The equivalent characteristics of the nanocomposite structure are calculated using Mori-Tanaka model. Based on first order shear deformation theory (FSDT) or Mindlin theory, energy method and Hamilton's principle, the motion equations are derived. Using harmonic differential quadrature method (HDQM) in conjunction with the Bolotin's method, the dynamic instability region (DIR) of the system is calculated. The effects of different parameters such as volume fraction of CNTs, magnetic field, boundary conditions, fluid velocity and geometrical parameters of pipe are shown on the DIR of the structure. Results show that with increasing volume fraction of CNTs, the DIR shifts to the higher frequency. In addition, the DIR of the structure will be happened at lower excitation frequencies with increasing the fluid velocity.

Computation of Two-Fluid Flows with Submerged hydrofoil by Interface Capturing Method (접면포착법에 의한 수중익 주위의 이층류 유동계산)

  • 곽승현
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.167-174
    • /
    • 1999
  • Numerical analysis of two-fluid flows for both water and air is carried out. Free-Surface flows with an arbitrary deformation have been simulated around two dimensional submerged hydrofoil. The computation is performed using a finite volume method with unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell-wise local mesh refinement. the integration in space is of second order based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels The linear equation systems are solved by conjugate gradient type solvers and the non-linearity of equations is accounted for through picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations the continuity equation the conservation equation of one species and the equations or two turbulence quantities.

  • PDF