Browse > Article
http://dx.doi.org/10.12989/acc.2020.9.1.103

The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid  

Ghaitani, M.M. (Department of Mechanical Engineering, Sari Branch, Islamic Azad University)
Majidian, A. (Department of Mechanical Engineering, Sari Branch, Islamic Azad University)
Shokri, V. (Department of Mechanical Engineering, Sari Branch, Islamic Azad University)
Publication Information
Advances in concrete construction / v.9, no.1, 2020 , pp. 103-113 More about this Journal
Abstract
This paper deal with the critical fluid velocity response of nanocomposite pipe conveying fluid based on numerical method. The pressure of fluid is obtained based on perturbation method. The motion equations are derived based on classical shell theory, energy method and Hamilton's principle. The shell is reinforced by nanoparticles and the distribution of them are functionally graded (FG). The mixture rule is applied for obtaining the equivalent material properties of the structure. Differential quadrature method (DQM) is utilized for solution of the motion equations in order to obtain the critical fluid velocity. The effects of different parameters such asCNT nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios and internal fluid are presented on the critical fluid velocity response structure. The results show that with increasing the CNT nanoparticles, the critical fluid velocity is increased. In addition, FGX distribution of nanoparticles is the best choice for reinforcement.
Keywords
critical fluid velocity; pipeline; internal fluid; Differential Quadrature Method;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Safari Bilouei, B., Kolahchi, R. and Rabanibidgoli, M. (2016), "Buckling of columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.   DOI
2 Shamsuddoha, M., Islam, M.M., Aravinthan, T., Manalo, A. and Lau, K.T. (2013), "Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs", Compos. Struct., 100, 40-54. https://doi.org/10.1016/j.compstruct.2012.12.019.   DOI
3 Sharifi, M., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Dynamic analysis of beams reinforced with $Tio_2$ nano particles under earthquake load", Wind Struct., 26, 1-9. https://doi.org/10.12989/was.2018.26.1.001.   DOI
4 Brush, O. and Almorth, B. (1975), Buckling of Bars, Plates and Shells, Mc-Graw Hill.
5 Chan, D.Q., Anh, V.T.T. and Duc, N.D. (2018), "Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells in thermal environments", Acta Mech., 230, 157-178. https://doi.org/10.1007/s00707-018-2282-4.   DOI
6 Thinh, T.I. and Nguyen, M.C. (2016), "Dynamic stiffness method for free vibration of composite cylindrical shells containing fluid", Appl. Math. Model., 40, 9286-9301. https://doi.org/10.1016/j.apm.2016.06.015.   DOI
7 Shokravi, M. (2017), "Vibration analysis of silica nanoparticles-reinforced beams considering agglomeration effects", Comput. Concrete, 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333.   DOI
8 Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92, 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008.   DOI
9 Su, Y., Li, J., Wu, C and Li, Z.X. (2016), "Influences of nano-particles on dynamic strength of ultra-high performance", Compos. Part B-Eng., 91, 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044.   DOI
10 Yoon, H.I. and Son, I. (2007), "Dynamic response of rotating flexible cantilever fluid with tip mass", Int. J. Mech. Sci., 49, 878-887. https://doi.org/10.1016/j.ijmecsci.2006.11.006.   DOI
11 Duc, N.D. (2014a), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi.
12 Chen, W., Shih, B.J., Chen, Y.C., Hung, J.H. and Hwang, H.H. (2002), "Seismic response of natural gas and water pipelines in the Ji-Ji earthquake", Soil Dyn. Earthq. Eng., 22, 1209-1214. https://doi.org/10.1016/S0267-7261(02)00149-5.   DOI
13 Chung, D.N., Dinh, N.N., Hui, D., Duc, N.D., Trung, T.Q. and Chipara, M. (2013), "Investigation of polymeric composite films using modified $TiO_2$ nanoparticles for organic light emitting diodes", J. Current Nanosci., 9, 14-20. https://doi.org/10.2174/157341313805118018.
14 Dey, T. and Ramachandra, L.S. (2017), "Non-linear vibration analysis of laminated composite circular cylindrical shells", Compos. Struct., 163, 89-100. https://doi.org/10.1016/j.compstruct.2016.12.018.   DOI
15 Duc, N.D. (2014b), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", J. Compos. Struct., 102, 306-314. https://doi.org/10.1016/j.compstruct.2012.11.017.   DOI
16 Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. A/Solid., 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004.   DOI
17 Duc, N.D. and Minh, D.K. (2010), "Bending analysis of three-phase polymer composite plates reinforced by glass fibers and Titanium oxide particles", J. Comput. Mater. Sci., 49, 194-198. https://doi.org/10.1016/j.commatsci.2010.04.016.
18 Zhou, X.Q., YU, D.Y., Shao, X.Y., Zhang, C.Y. and Wang, S. (2017), "Dynamics characteristic of steady fluid conveying in the periodical partially viscoelastic composite pipeline", Compos. Part B-Eng., 111, 387-408. https://doi.org/10.1016/j.compositesb.2016.11.059.   DOI
19 ZamaniNouri, A. (2017), "Mathematical modeling of pipes reinforced with CNTs conveying fluid for vibration and stability analyses", Comput. Concrete, 19(3), 325-331. https://doi.org/10.12989/cac.2017.19.3.325.   DOI
20 Zhai, H., Wu, Z., Liu, Y. and Yue, Z. (2011), "Dynamic response of pipeline conveying fluid to random excitation", Nucl. Eng. Des., 241, 2744-2749. https://doi.org/10.1016/j.nucengdes.2011.06.024.   DOI
21 Benjamin, T.B. (1961), "Dynamics of a system of articulated pipes conveying fluid", Proc. Royal Soc. A., 261(130), 457-486. https://doi.org/10.1098/rspa.1961.0090.
22 Abdoun, T.H., Ha, D., O'Rourke, M., Symans, M., O'Rourke, T., Palmer, M. and Harry, E. (2009), "Factors influencing the behavior of buried pipelines subjected to earthquake faulting", Soil Dyn. Earthq. Eng., 29, 415-427. https://doi.org/10.1016/j.soildyn.2008.04.006.   DOI
23 Alijani, F. and Amabili, M. (2014), "Nonlinear vibrations and multiple resonances of fluid filled arbitrary laminated circular cylindrical shells", Compos. Struct., 108, 951-962. https://doi.org/10.1016/j.compstruct.2013.10.029.   DOI
24 Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, Cambridge.
25 Frikha, A., Hajlaoui, A., Wali, M. and Dammak, F. (2016), "A new higher order C0 mixed beam element for FGM beams analysis", Compos. Part B., 106, 181-189. https://doi.org/10.1016/j.compositesb.2016.09.024.   DOI
26 Duc, N.D., Hadavinia, H., Thu, P.V. and Quan, T.Q. (2015), "Vibration and nonlinear dynamic response of imperfect three-phase polymer nanocomposite panel resting on elastic foundations under hydrodynamic loads", Compos. Struct., 131, 229-237. https://doi.org/10.1016/j.compstruct.2015.05.009.   DOI
27 Duc, N.D., Khoa, N.D. and Thiem, H.T. (2018), "Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mat. Struct., 25, 1157-1167. https://doi.org/10.1080/15376494.2017.1341581.
28 Duc, N.D., Quan, T.Q. and Nam, D. (2013), "Nonlinear stability analysis of imperfect three phase polymer composite plates", J. Mech. Compos. Mater., 49, 345-358. ttps://doi.org/10.1007/s11029-013-9352-4.   DOI
29 Ghavanloo, E. and Fazelzadeh, A. (2011), "Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid", Physica E., 44, 17-24. https://doi.org/10.1016/j.physe.2011.06.024.   DOI
30 GhorbanpourArani, A., Bagheri, M.R., Kolahchi, R. and KhodamiMaraghi, Z. (2013), "Nonlinear vibration and instability of fluid-conveying DWBNNT embedded in a visco-Pasternak medium using modified couple stress theory", J. Mech. Sci. Tech., 27(9), 2645-2658. https://doi.org/10.1007/s12206-013-0709-3.   DOI
31 Gong, S.W., Lam, K.Y. and Lu, C. (2000), "Structural analysis of a submarine pipeline subjected to underwater shock", Int. J. Pres. Ves. Pip., 77, 417-423. https://doi.org/10.1016/S0308-0161(00)00022-3.   DOI
32 Huang, Y.M., Liu, Y.S., Li, B.H., Li, Y.J. and Yue, Z.F. (2010), "Natural frequency analysis of fluid conveying pipeline with different boundary conditions", Nucl. Eng. Des., 240(3), 461-467. https://doi.org/10.1016/j.nucengdes.2009.11.038.   DOI
33 Hajlaoui, A., Chebbi, E., Wali, M. and Dammak, F. (2019a), "Geometrically nonlinear analysis of FGM shells using solid-shell element with parabolic shear strain distribution", Int. J. Mech. Mater. Des., 1-16. https://doi.org/10.1007/s10999-019-09465-x.
34 Hajlaoui, A., Chebbi, E., Wali, M. and Dammak, F. (2019b), "Buckling analysis of carbon nanotube reinforced FG shells using an efficient solid-shell element based on a modified FSDT", Thin Wall. Struct., 144, 106254. https://doi.org/10.1016/j.tws.2019.106254.   DOI
35 Hajlaoui, A., Chebbi, E., Wali, M. and Dammak, F. (2019c), "Static analysis of carbon nanotube-reinforced FG shells using an efficient solid-shell element with parabolic transverse shear strain", Eng. Comput. https://doi.org/10.1108/EC-02-2019-0075.
36 Hajlaoui, A., Triki, E., Frikha, A., Wali, M. and Dammak, F. (2017), "Nonlinear dynamics analysis of FGM shell structures with a higher order shear strain enhanced solid-shell element", Latin. Am. J. Solid. Struct., 14, 72-91. http://dx.doi.org/10.1590/1679-78253323.   DOI
37 Housner, G.W. (1952), "Bending vibrations of a pipe line containing flowing fluid", J. Appl. Mech., 19, 205-208.   DOI
38 Inozemtcev, A.S., Korolev, E.V. and Smirnov, V.A. (2017), "Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight", Struct., 18(1), 67-74. https://doi.org/10.1002/suco.201500048.
39 JafarianArani, A and Kolahchi, R. (2016), "Buckling Analysis of embedded columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.   DOI
40 Kim, D.H., Lee, G.N., Lee, Y. and Lee, I.K. (2015), "Dynamic reliability analysis of offshore wind turbine support structure under earthquake", Wind Struct., 21, 609-623. https://doi.org/10.12989/was.2015.21.6.609.   DOI
41 Lin, W. and Qiao, N. (2008), "Vibration and stability of an axially moving beam immersed in fluid", Int. J. Solid. Struct., 45, 1445-1457. https://doi.org/10.1016/j.ijsolstr.2007.10.015.   DOI
42 Kolahchi, R., RabaniBidgoli, M., Beygipoor, G.H. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.   DOI
43 Lam, K.Y., Zong, Z. and Wang, Q.X. (2003), "Dynamic response of a laminated pipeline on the seabed subjected to underwater shock", Compos. Part B-Eng., 34, 59-66. https://doi.org/10.1016/S1359-8368(02)00072-0.   DOI
44 Lee, U. and Oh, H. (2003), "The spectral element model for pipelines conveying internal steady flow", Eng. Struct., 25, 1045-1055. https://doi.org/10.1016/S0141-0296(03)00047-6.   DOI
45 Liu, X., Zhang, H., Gu X., Chen, Y., Xia, M. and Wu, K. (2017), "Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults", Earthq. Struct., 12, 321-332. https://doi.org/10.12989/eas.2017.12.3.321.   DOI
46 Liu, Z.G., Liu, Y. and Lu, J. (2012), "Fluid-structure interaction of single flexible cylinder in axial flow", Comput. Fluid., 56, 143-151. https://doi.org/10.1016/j.compfluid.2011.12.003.   DOI
47 Nogueira, A.C. (2012), "Rationally modeling collapse due to bending and external pressure in pipelines", Earthq. Struct., 3, 473-494. https://doi.org/10.12989/eas.2012.3.3_4.473.   DOI
48 Mohammadian, H., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Dynamic response of beams reinforced by $Fe_2O_3$ nanoparticles subjected to magnetic field and earthquake load", Earthq. Struct., 13, 589-598. https://doi.org/10.12989/eas.2017.13.6.589.   DOI
49 Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta. Metall. Mater., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.   DOI
50 Motezaker, M. and Kolahchi, R. (2017), "Seismic response of CNT nanoparticles-reinforced pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.   DOI
51 Paidoussis, M.P. and Issid, N.T. (1974), "Dynamic stability of pipes conveying fluid", J. Sound Vib., 33, 267-294. https://doi.org/10.1016/S0022-460X(74)80002-7.   DOI
52 RabaniBidgoli, M. and Saeidifar, M. (2017), "Time-dependent buckling analysis of CNT nanoparticles reinforced columns exposed to fire", Comput. Concrete, 20(2), 119-127. https://doi.org/10.12989/cac.2017.20.2.119.   DOI
53 RabaniBidgoli, M., Karimi, M.S. and GhorbanpourArani, A. (2016), "Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium", Mech. Adv. Mater. Struct., 23(7), 819-831. https://doi.org/10.1080/15376494.2015.1029170.   DOI
54 Ray, M.C. and Reddy, J.N. (2013), "Active damping of laminated cylindrical shells conveying fluid using 1-3 piezoelectric composites", Compos. Struct., 98, 261-271. https://doi.org/10.1016/j.compstruct.2012.09.051.   DOI