• Title/Summary/Keyword: Volume of Fluid 방법

Search Result 140, Processing Time 0.025 seconds

Numerical Prediction of Ship Motions in Wave using RANS Method (RANS 방법을 이용한 파랑 중 선박운동 해석)

  • Park, Il-Ryong;Kim, Jin;Kim, Yoo-Chul;Kim, Kwang-Soo;Van, Suak-Ho;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.232-239
    • /
    • 2013
  • This paper provides the structure of a Reynolds Averaged Navier-Stokes(RANS) based simulation method and its validation results for the ship motion problem. The motion information of the hull computed from the equations of motion is considered in the momentum equations as the relative fluid motions with respect to a non-inertial coordinates system. A finite volume method is used to solve the governing equations, while the free surface is captured by using a two-phase level-set method and the realizable k-${\varepsilon}$ model is used for turbulence closure. For the validation of the present numerical approach, the numerical results of the resistance and motion tests for DTMB 5415 at two ship speeds are compared against available experimental data.

Modeling of Space Shuttle Main Engine heat exchanger using Volume-Junction Method (Volume-Junction Method를 이용한 우주왕복선 액체로켓엔진 열교환기 모델링)

  • Cha, Jihyoung;Ko, Sangho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.213-217
    • /
    • 2017
  • Since more than 30% of the liquid rocket engine failures occur during the start-up process, and the Space Shuttle Main Engine (SSME) is especially sensitive to small changes in propellant conditions, a 2% error in the valve position or a 0.1sec timing error could lead to significant damage of the engine, simulation modeling of start-up process is important. However, there are many difficulties associated with engine start-up process caused by nonlinear mass flow and heat transfer characteristics associated with filling an unconditioned engine system with cryogenic propellants. In this paper, we modelled a SSME simulation model using partially Computational Fluid Dynamics (CFD) method to solve these problems and checked the performance by comparing with the performance of the simulation model using the lumped method under the state of normal condition.

  • PDF

A Study on Numerical Optimization Method for Aerodynamic Design (공력설계를 위한 수치최적설계기법의 연구)

  • Jin, Xue-Song;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.29-34
    • /
    • 1999
  • To develop the efficient numerical optimization method for the design of an airfoil, an evaluation of various methods coupled with two-dimensional Naviev-Stokes analysis is presented. Simplex method and Hook-Jeeves method we used as direct search methods, and steepest descent method, conjugate gradient method and DFP method are used as indirect search methods and are tested to determine the search direction. To determine the moving distance, the golden section method and cubic interpolation method are tested. The finite volume method is used to discretize two-dimensional Navier-Stokes equations, and SIMPLEC algorithm is used for a velocity-pressure correction method. For the optimal design of two-dimensional airfoil, maximum thickness, maximum ordinate of camber line and chordwise position of maximum ordinate are chosen as design variables, and the ratio of drag coefficient to lift coefficient is selected as an objective function. From the results, it is found that conjugate gradient method and cubic interpolation method are the most efficient for the determination of search direction and the moving distance, respectively.

  • PDF

Two Dimensional Numerical Simulation of Liquid Sloshing (액체 슬라상에 관한 2차원 수치 시뮬레이션)

  • Kang, Sin Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.78-82
    • /
    • 1988
  • 자유표면 유동을 시뮬레이션할 수 있는 수치 알고리듬 중 가장 최근에 개발된 volume of fluid (VOF) 방법을 이용하여 뚜껑이 닫힌 사각 컨테이너 속의 슬라싱을 시뮬레이션 하였다. 그 결과 유동이 작은 경우에는 알고리듬이 불안정하게 되어 장기간 시뮬레이션을 어렵게 하는 문제점이 발견되었다. 이 문제점을 해결하기 위해 VOF 알고리듬이 불안정하게 되어 장기간 시뮬레이션을 어렵게하는 문제점이 발견되었다. 이 문제점을 해결하기 위해 VOF 알고리듬 중 유량이동 알고리듬을 수정하여 원래의 알고리듬으로 시뮬레이션한 결과와 비교 분석하였다

  • PDF

Second Order Model for Free Surface Convection (자유표면유동을 위한 이차원 모델개발)

  • Kim Seong-O.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.73-79
    • /
    • 1997
  • VOF 방법에 의한 자유표면 유동계산의 정확성을 개선하기 위해 이차정도 모델을 개발하였다. 개발된 이차원 모델의 정확성을 비교하기 위하여 여러 가지 크기의 원형 및 Solitary wave형상의 자유표면 유동을 통하여 기존에 개발된 두 가지의 일차정도 모델과 비교하였다. 비교결과 반경이 큰 원과 같이 곡률이 작은 형상의 경우에는 일차정도 모델도 비교적 정확한 결과를 보여주고 있으나 작은 반경의 원형이나 Solitary wave와 같이 곡률이 큰 형상의 경우 일차정도 모델은 많은 오차를 보여주는 반면에 이차정도 모델은 어느 경우에나 매우 정확한 결과를 보여준다.

  • PDF

A Basic Study on a Magnetic Fluid Driven Artificial Heart (자성유체에 의해 구동되는 인공심장에 관한 기초연구)

  • Kim, Dong-Wook;MITAMURA, Yoshinoro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.940-947
    • /
    • 2006
  • A variety of actuators fur an implantable artificial heart have been studied. They, all, however, share the disadvantages of a complicated energy conversion mechanism and of the need to use bearings. A ferrofluidic actuator directly drives magnetic fluids by applying a magnetic field to these fluids; it does not require bearings. In this study, the feasibility of a ferrofluidic actuator for an implantable artificial heart was studied. An way of two Poles of ring solenoids was mounted near the acrylic tube $({\phi}\;7.4mm)$. A rubber sack (volume : $2m{\ell}$ was connected to both ends of the acrylic tube. The sack were encased in a rigid chamber that had inlet and outlet ports. The acrylic tube and the rubber sack were filled with water encased in a rigid chamber magnetic fluid and the iron cylinder were immersed in the water. Two experiment method was conducted. 1) distance between stoppers were 72mm and 2) distance between stoppers were 104mm. A stroke volume was stability and $0.96m{\ell}$ was obtained in the experiment 1 and $1.92m{\ell}$ in the experiment 2. The energy efficiency of Experiment method 2 is about five times than Experiment method 2. A magnetic fluid-driven blood pump could be feasible if the magnetic fluid with high magnetization (3 times yester than the current value) is developed.

  • PDF

Permeability prediction of plain woven fabric by using control volume finite element method (검사체적 방법을 이용한 평직의 투과율 계수 예측)

  • Y. S. Song;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF

MRI Artifacts and Reducing Techniques

  • 강해진
    • Proceedings of the KSMRM Conference
    • /
    • 1999.04a
    • /
    • pp.34-42
    • /
    • 1999
  • 의료영상에서 인공물(Artifacts) 이라 함은 영상이 얻어지는 신체부위와 아무런 관련이 없으나 얻어진 영상에는 마치 영상의 일부분으로 나타나는 모든 것을 가리킨다. 따라서 영상에서 이들 인공물들은 실제 조직의 해부학적인 구조를 나타내지 않으므로 영상 판독에 영향을 주어 잘못된 진단을 초래할 수도 있다. 그러나 MR 영상이 가능한 이래로 새로운 여러 종류의 MR 인공물들이 많이 발견 되었으나 다행스럽게도 거의 모든 MR 인공물들은 쉽게 설명이 가능하며, 따라서 이들 인공물들에 의한 진단 오류의 가능성은 매우 희박한 실정이다. 그러나 새로운 영상방법이나 혹은 새로운 펄스대열이 계속 고안됨에 따라 새로운 종류의 인 공물들이 생겨날 가능성은 항상 존재하고 있다. 지금까지 알려진 여러 MR 인공물들은 그 생겨난 원인에 따라 다음과 같이 크게 세 가지로 분류가 가능하다. I. Motion Artifacts 1. Voluntary motion 2. Involuntary motion 1) Bowel Peristalsis 2) Respiration 3) Cardiac and vessel pulsation 4) Swallowing 3. Fluid motion 1) Blood flow 2) Cerebrospinal fluid flow II. Reconstruction Artifacts 1. Aliasing 2. Partial volume averaging 3. Truncation (Ringing) 4. Central point III. Magnetic and RF Field Related Artifacts 1. Chemical shift 1) First kind 2) Second kind 2. Susceptibility 1) Dental 2) Metal 3. Magic angle 4. Zipper 5. Bad data point 6. RF field inhomogeneity 7. Magnetic field inhomogeneity 8. Eddy current 9. slice overlapping 10. Zebra 11. RF overflow

  • PDF

Dynamic Response of the System for Vacuum Pump Performance Evaluation (진공 펌프 성능 평가 계통의 동적 응답)

  • Sim, Woo-Gun;Lim, Jong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1359-1367
    • /
    • 2004
  • The demand of vacuum pump has been increased in the process of semi-conduct manufacturing, as a core component. The response of the system for vacuum pump performance test can be utilized to assess the system and to obtain the reliability of the apparatus for the test. The system consists of gas supply tank, pressure chamber, measurement chamber and transmission line. Transient analysis for compressible fluid has been conducted to evaluate the dynamic characteristic of the volume terminated transmission line. Numerical approach based on the method of characteristics is used for the analysis. The response is evaluated with the important parameters for the system: i.e., length and diameter of the line, volume of the terminal tank. Using the numerical results, pumping speeds are calculated and then compared to the experimental results.

Numerical Study on the Two-Dimensional Heat Flow in High-Power Density Welding Process (고에너지밀도용접 과정에서의 2차원 열유동에 대한 수치해석적 연구)

  • Park, Kun-Joong;Jang, Kyung-Chun;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1166-1174
    • /
    • 2000
  • This work presents a two-dimensional quasi-steady state model to study the fluid flow and heat transfer in high-power density welding process of thin AISI-304 stainless steel plates. The enthalpy method and the finite volume method were used for a numerical analysis of the mushy region phase change as well as the heat flow at the weld pool and the heat-affected zone. The results show that the mushy region distributed around the weld pool becomes wider downstream and the surface heat losses by convection and radiation can be significant factors in welding process especially when a welding speed is relatively low.