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Second Order Model for Free Surface Convection
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1. Introduction:

Varieties of physical hydrodynamic
phenomena involve interfaces between phases
as shown Fig.l. The informations of the
interfaces are necessary for solving the field
equation such as mass and momentum
equation. Up to now, various kinds of
numerical method are developed to calculate
the motion of the interfaces. One of the
approaches is Lagrangian description of the
interface in  which the
calculated by tracing particles in Lagrangian
method with the field variables calculated by
Eulerian approach such as boundary integral
technique(l], finite-element methods{2] and
boundary-fitted coordinates[3]. This approach
has simple logics but shows problem for
large deformations of interface such as
surface folding and breaks.

As an alternative approach, VOF(=volume of
fluid) method can be applied to determine free
surface curves by use of the VOF. The
method is not susceptible to the problems

interfaces are

* 3, dFARHAT &

Fig. 1 Typical examples of
free surface

which can be encountered when using the
Lagrangian method.
In the earlier applications of the VOF

method, donor—acceptor method with
Oth-order[4] was used for VOF calculation,
where the shape in a surface cell was
assumed to be either horizontal or vertical
rectangular shapes. For the calculation of
VOF fluxes, the donor-acceptor method uses
donor cell or acceptor cell alternatively based
on the shape of donor cell to prevent over
shooting or under shooting of VOF value.
However the alternative usages of the donor
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Fig. 2 The shapes of the reconstructed
interface with large curvature by use of
various free surface convection model.
—— Analytic input data,
—=—'FLAIR method for the right
—t+— FLAIR method for the left
—&— :Second-order method
—— Centered slope method

or acceptor cell bring inaccurate results in
VOF flux calculation. To improve the
accuracy of free surface convection, two
different approaches of the first-order method
have been developed by Youngs[5]l and
Ashgriz[6]. The basic concept of the FLAIR
method is to assume that the interfaces of a
surface cell can be represented by a straight
line with a slope determined at the face of
two adjacent cells. On the other hand,
Youngs’ approach uses a slope in the cell
center. But unfortunately, the detailed
information of the method was not found in
open literatures.

Even though the accuracy of VOF flux
calculation is improved, the first-order
methods make sharp edges near the end of a
straight line as shown in Fig. 2. The sharp
edge brings to generate flatsom which is one
of reasons for the distortion of free surface
and the total volume change of VOF.
Therefore to improve accuracy of free surface
convection a second-order approximation
technique will be
developed in this study.

2. Second-order model

2.1 Slope calculation

The methodology applied for the
second-order model is to find a second-order
linear curve to fit the distribution of volume
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Fig. 3 Definition of cell block

fraction. To calculate the slope at the face of
a surface cell, it is assumed that the interface
of free surface can be represented by either
one of a single-valued function, f(x) or f(y),
for the x, y directions. If the surface is
represented as f(x), f(x) can be approximated
as the sum of the volume fraction from cell
(j-1) to cell (j*1) for each cell column of Fig.
3.

pIRCTNI :
f,-=ﬁﬁ‘»H—k, H= kgldyg. (1

If the larger value of volume fraction between
the two columns is assigned as Fy and the
smaller one as Fn and the column width is
represented  as xu(zL/H) for Fu and
xr(=R/H) for Fy, the boundary slope 'm’ is
calculated from equations (2), (3), (4) and (5).

Case-1:
m=xL2L[——(2xRF,,,+xLFM)+
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case-3:
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case—4:

m=—_22[2xL(1—FM)+xR(1—Fm)
Xr

+2V (1 -Fu){((x (1= Fy) +x:(1— F,0} 1(5)
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xpFp+ Fm(l—FM)XMLZ%E-

2.2 Model case identification
A quadratic equation is defined as

y=a-x*+b-x+c¢ to represent the volume
fraction distribution in a surface cell
normalized by surface cell width W. The
constants a and b are obtained by equation
(6) for the case of unit cell width,

b=m;. (6)

a=————m'; " and
When fitting the interface of a surface
cell by the second-order curve, 8 possible
shapes may exist as shown in Fig. 6.

Fig. 4 Possible shapes of the interface in
approximating the free surface by the
second-order model

However, cases-f, g, h are excluded by
adjusting the slope such that the maximum
difference of volume fraction distribution lies
within the cell height. The reason is that
cases—1, g, h rarely appear in volume fraction
calculation for the rearranged interface.
Furthermore, higher than 4th order algebraic
equations have to be solved to get the

‘c’ in the equation for the cases.

constant 'c
Each case is identified by the equations

(1)-(12).
Case-a

3
if FZ#m—)g‘ and FS—‘QII%;@, (7

1= m,,
case-b
3_ .3

if Fz—Mand FSI—M, (8

6 (ml_mr)
case—c
. (m,+2m)
if F21+ﬂT— for my;- m,>0 , (9)

_ _ 2
ifF21+—mL6ﬁni(—Z'+qZ:) for m,  m<0, (10)
case-d

3
if FSW"ZTIS—, (11)
case-e
if a1 lmiz ), and
(m—m,)*
m,—2m;{ m,—my, 2
FSI+—T—(m) . 12)

2.3 Calculation of convective flux

To calculate the convective flux, the
constant ‘c’ must be determined at first. For
cases-b and d, the constant ‘c’ is determined
explicitly by equations (13) and (14).

Zmotom 13)

c=F~ 3 ,

for case-b,

=L _a( SEVE (1)

for case-d, 12 4 p

However, for cases-a, ¢ and e, the constant
‘c’ must be evaluated from the third order
algebraic  equation which comes from
integrating the quadratic equation within the

surface cell. After establishing the third-order



76 AL

2 ALRA T4 A

Fig. 5 Calculation of convective
flux of second- order for each
direction

algebraic equation, an appropriate solution is
obtained by the Cardano’s solution
procedure[7].

The convective flux calculation in the
second-order model is accomplished via
integration of the quadratic equation from the
cell face to the distance defined by the local
velocity of the cell face over the time. For

example, for case-a, the flux of volume
fraction in the positive x direction is

8fx=0, if xp=xp, (15)
sfe= [ i, if xp<xp (16)

where xp=1—u- dt/W.
The flux of VOF in the positive y direction
is

ofy=0, if yp=f, a7

6fy=fz(f—yp)dx, if fi<yr<fr, (18)

o= [ (-, if yp<so, (19)

where yr,=1-v-dt/H and xi, X2 are the points
where the second curve intersects the line
f=yp.

3. Results and discussion
3.1 Convection of circles

The second order model developed in
this study is tested and compared with the
FLAIR method and the centered slope method
for the convection of circular geometry. Here,

40—Cells in diameter
32-Cells in diameter
24—Cells in diameter
16—Cells in diameter

8—Cells in diameter

4—Cells in diameter
12—Cells in diameter
20—Cells in diameter
28—Cells in diameter
36—Cells in diameter

Second —
order method

Centered
slope
method

FLAIR
method

Fig. 6 Reconstruction of circles convected
after 100 time steps by each free surface
convection model

the convective calculations of free surface by
FLAIR method are done with the program
supplied by the original authors[6] which has
large amounts of correction logic to prevent
the diffusion of volume fraction. A uniform
velocity field 1s assigned for the entire
calculation region in the right and upward
direction. The velocities in the x and ¥y
directions are one quarter of a uniform mesh
size. Each circle is convected via this velocity
for 100 time steps until all the circles
completely move out of its original position.
The calculation results are reviewed for three
types of numerical errors. The first is a
maximum cell error which can be an
indication of local shape deformation. The
second is the root of the square sum errors
in every cell for indication of overall shape
deformation. The final error is a total volume
change to measure the conservation of
volume fraction. The cell convection error is
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Fig. 7 Maximum cell error vs.
circle diameter after 100 time step
convections
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Fig. 8 Root of square sum error vs.
circle diameter after 100 time step
convections

normalized by circle area. To show the
accuracy of the convection scheme of each
technique, various sizes of concentric circles
are drawn with the analytic circles in Fig. 6.

The shapes of free surface convected
by the centered slope approach show a
tendency toward a square edge. The shape
given by the FLAIR method almost coincides
with the analytic circle for large diameter.
But when diameter is small the shape is
seriously distorted. The shape given by the

second-order method is almost identical to
the analytic data.

The maximum cell error and the root
of square sum error for each convection
method are shown in Fig. 7 and Fig. 8. When
comparing the errors between both of the
first-order method, the FLAIR method gives
smaller errors than the centered slope method
for the circle with large diameter but the
centered slope method gives smaller errors for
the circle with small diameter. The resuits
comes from the fact that when the diameter
of a circle is large, the straight line
constructed by the FLAIR method fit the
interface correctly. On the other hand when
the diameter of a circle is small, the FLIAR
method yields a sharp edge. The sharp edge
produce VOF convection errors from flatsom.

However the second-order model always
shows smaller error than both of the
first-order method as shown Figs. 67

Further more, the second-order model with
almost half the number of cells shows an
equivalent magnitude of error as compared
with both of the first-order approaches.

Both of the errors for each technique
has similar tendency. This means that most
of the cell convection error are very small
except for the cells that have the dominant
error.

The total volume change remains
within order of 1.0E-6 for the first~order
method and the second order method.
However the FLAIR method shows the
various amounts of volume change from the
order of 1.0E-3 to the order of 1.0 of cell
volume fraction for small sizes of diameter.
The total volume changes seems to come
from the logic used in the FLAIR method to
VOF overshoots and

prevent from

undershoots.

3.2 Convection_of solitary waves

To compare the performance of the
convection methods for a geometry with a
sharp corner, solitary wave convection is
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Fig. 9 Reconstruction of solitary wave convected
after 100 time steps by each free surface

convection model

examined which is represented in the form of
y=h-sech’(k-x)+y, As

case, the wave number k is assumed as 4.0/h
and the wave height h varies from 4.0 to 16.0
times the cell length. The solitary wave is
convected to the right hand direction with the
uniform velocity in the x-direction as shown
in Fig. 9.
After 100 convection time steps, the FLAIR
method yields the worst results among the
three approaches for both of errors (see Figs.
10 and 11). It may be reasoned that the
FLAIR method produce inappropriate interface
shape around the crest of wave as explained
in section 3.1. As reviewing Figs. 10 and 11,
the second-order method can reduce the
number of meshes by half relative to the
first-order method. Compared with the FLAIR
method, the second-order method reduces the
mesh number by factor of 2 to 3 times.

The total volume change remains

a sample
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Fig. 10 Maximum cell error vs.
solitary wave height after 100 time
step convections
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Fig. 11 Root of square sum error vs.
solitary wave height after 100 time

step convections

within order of 1.0E-6 for the first-order
method and the second order method like the
convection of circles. However the FLAIR
method shows the various amounts of volume
change from the order of 1.0E-3 to the order
of 1.0 of cell volume fraction for small sizes
of diameter

4. Conclusions
A new
transport and
surface was

technique for the interface
reconstruction of the
developed for the numerical

free
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models of the volume fraction method by
utilization of a set of second-order linear
curves.

This technique was tested for the various
sizes of circles and solitary waves advected
with uniform velocities. For the small
curvature of free surface such as a circle
with a large diameter, both of the first-order
approaches showed relatively close predictions
compared with analytic solution. For large
curvature geometry such as a circle with a
relatively small diameter compared with the
cell size or the solitary waves, the first-order
approaches show the appreciable distortion of
shape and diffusion of free surface. However,
the second-order model consistently
demonstrates accurate prediction of free
surface convection even with a less number
of cells.

However, the model developed in this
study has been applied only for the surface
with  smooth Therefore  the
application for a surface with sharp edge
should be done after appropriate testing.

The second-order model has been
developed for the 2-dimensional case but the
model has a difficulty for directly extending
to 3-dimensional case because the basic cases
are increased and the algebraic calculations
for VOF flux are much more complicated.

interface.
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