• Title/Summary/Keyword: Volume of Fluid(VOF)

Search Result 211, Processing Time 0.032 seconds

Correlation between Welding Parameters and Detaching Drop Size using Regression (회귀 분석을 이용한 용접 변수와 이탈 액적 크기의 상호 관계)

  • 최상균;한창우;이상룡;이영문
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2002
  • Metal Transfer in gas metal arc (GMA) welding is a complex phenomenon affected by many parameters of the welding conditions and material properties. In this research, the correlation equation between the welding condition and detaching droplet size and detaching velocity in GMA welding was studied via recession analysis on the results of numerical analysis using the volume-of-fluid (VOF) method. Welding parameters and material properties were grouped into three dimensionless numbers and detaching droplet size was expressed as the function of them. Second order and exponential multi-variable correlation forms were assumed, and the coefficients of these equations were calculated for globular and spray modes as well as entire transfer modes. Applying correlation equation into available experimental data, it shows good agreement.

Study on the Effects of Surface Roughness and Turbulence Intensity on Dam-break Flows (댐 붕괴 유동에 미치는 표면 거칠기와 난류강도 변화의 영향 연구)

  • Park, Il-Ryong;Jung, Kwang-Hyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.247-253
    • /
    • 2012
  • Dam-break flows, a type of very shallow gravity-driven flow, are substantially influenced by resistance forces due to viscous friction and turbulence. Assuming turbulent flow, the main focus of this study is to validate the increase of drag forces caused by surface roughness and especially turbulence intensity. A Reynolds Averaged Navier-Stokes(RANS) approach with the standard k-${\varepsilon}$ turbulence model is used for this study, where the free surface motion is captured by using a volume of fluid(VOF) method. Surface roughness effects are considered through the law of the wall modified for roughness, while the initial turbulence intensity which determines the lowest level of turbulence in the flow domain of interest is used for the variation of turbulence intensity. It has been found that the numerical results at higher turbulence intensities show a reasonably good agreement with the physical aspects shown by two different dam-break experiments without and with the impact of water.

Transformation of Irregular Waves due to Rectangular Submerged Non-porous Breakwaters (사각형형상 불투과성 수증방파제에 의한 불규칙파의 변형)

  • Hwang, Jong-Kil;Lee, Seung-Hyeob;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.949-958
    • /
    • 2004
  • A combined experimental and numerical effort is presented for investigation of reflection of irregular waves due to rectangular submerged breakwaters. In the numerical model, the Reynolds equations are solved by a finite difference method and k-$\varepsilon$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. Numerical predictions of transmission and reflection coefficients are verified by comparing to laboratory measurements. Very reasonable agreements are observed. The reflection coefficients become stronger in proportion to numbers of submerged breakwaters.

A Study on Spray Angle of Dual Swirl Injector with Different Recess Length (Dual Swirl Injector Recess 길이에 따른 분산각 평가)

  • Park, Hee-Ho;Kim, Tae-Han;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.30-37
    • /
    • 2003
  • Spray angle of dual swirl injector is established according to the velocity ratio at orifice exit. Due to the internal mixing at recess and lack of correlation for the combined two fluid injection, prediction of spray angle is very difficult. This study deal with experimental work and numerical simulation on spray angle with different recess length. Among the multiphase flow models, the VOF model was selected to simulate the spray angle. Feasibility of numerical analysis are confirmed by comparing the results with the experimental data, and the effect of recess on spray angle are analyzed for single and combined spray case.

Analysis of Wave Transformation and Velocity Fields Including Wave Breaking due to the Permeable Submerged Breakwaters (수중투과성구조물에 의한 쇄파를 수반한 파랑변형 및 유속장 해석)

  • 김도삼;이광호;김정수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.171-181
    • /
    • 2002
  • Among various numerical methods of wave transformations including wave breaking by structure, models using VOF(Volume Of Fluid) method to trace free surface are getting into the spotlight recently. In order to analyze wave transformations and velocity of the wave fields due to the permeable submerged breakwater(PSB), This study applied VOF method to the two-dimensional wave channel installed line-source to generate waves and added dissipation zone to offer a non-reflective boundary. Hydraulic experiments was performed to obtain the application of two-dimensional numerical wave channel. The results of numerical experiments using the two-dimensional wave channel agree well with the experimental data. It was shown that vortices are formed behind the PSB, and in case of the 2-rowed PSB they also are occurred in between PSBs, strongly non-linear waves are developed on the crown of the PSB, and the direction of velocities in porous media is determined by the shape of free surface.

Second Order Model for Free Surface Convection (자유표면유동을 위한 이차원 모델개발)

  • Kim Seong-O.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.73-79
    • /
    • 1997
  • VOF 방법에 의한 자유표면 유동계산의 정확성을 개선하기 위해 이차정도 모델을 개발하였다. 개발된 이차원 모델의 정확성을 비교하기 위하여 여러 가지 크기의 원형 및 Solitary wave형상의 자유표면 유동을 통하여 기존에 개발된 두 가지의 일차정도 모델과 비교하였다. 비교결과 반경이 큰 원과 같이 곡률이 작은 형상의 경우에는 일차정도 모델도 비교적 정확한 결과를 보여주고 있으나 작은 반경의 원형이나 Solitary wave와 같이 곡률이 큰 형상의 경우 일차정도 모델은 많은 오차를 보여주는 반면에 이차정도 모델은 어느 경우에나 매우 정확한 결과를 보여준다.

  • PDF

Coupled Analysis of Heat Transfer, Fluid Flow and Solidification in the Filling of Castings (용탕충진과정에 있어서 열 및 유동을 포함한 2차원 응고해석)

  • Kim, Sung-Bin;Cho, In-Sung;Kim, Jin-Su;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.424-431
    • /
    • 1993
  • A Numerical technique has been developed for the coupled heat transfer and fluid flow calculation during the casting process. In this method the SMAC technique was coupled with the concept of Volume of Fluid(VOF) to calculate melt free surface and velocity profiles within the melt, and the Energy Marker method coupled with the finite difference method was proposed for the convective and conductive heat transfer analysis in the casting. When comparing numerical calculations with experimental observations, a close correlation was evident. It has been shown that this technique is useful for proper gating and casting design, especially for thin-walled castings.

  • PDF

Comparison of Numerical Results for Laminar Wavy Liquid Film Flows down a Vertical Plate for Various Time-Differencing Schemes for the Volume Fraction Equation (수직평판을 타고 흐르는 층류파동액막류에 대한 체적분율식 시간차분법에 따른 해석 결과 비교)

  • Park, Il-Seouk;Kim, Young-Jo;Min, June-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1169-1176
    • /
    • 2011
  • Liquid film flows are classified into waveless laminar, wavy laminar, and turbulent flows depending on the Reynolds number or the flow stability. Since the wavy motions of the film flows are so intricate and nonlinear, studies on them have largely been experimental. Most numerical approaches have been limited to the waveless flow regime. The various free surface-tracking schemes adopted for this problem were used to more accurately estimate the average film thickness, rather than to capture the unsteady wavy motion. In this study, the wavy motions in laminar wavy liquid film flows with Reynolds numbers of 200-1000 were simulated with various numerical schemes based on the volume of fluid (VOF) method for interface tracking. The results from each numerical scheme were compared with the experimental results in terms of the average film thickness, the wave velocity, and the wave amplitude.

NUMERICAL SIMULATION OF FLOWS INDUCED BY WALL ADHESION (벽면흡착에 의해 야기되는 유동 수치해석)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.2-5
    • /
    • 2011
  • This paper presents a numerical study on multiphase flows induced by wall adhesion The CSF(Continuum Surface Force} model is used for the calculation of the surface tension force and implemented in an in-house solution code(PowerCFD). The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with volume capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing As an application of the present method, the effects of wall adhesion are numerically simulated with the CSF model for a shallow pool of water located at the bottom of a cylindrical tank. Two different cases are computed, one in which the water wets the wall and one in which the water does not wet the wall. It is found that the present method simulates efficiently and accurately surface tension-dominant multiphase flows induced by wall adhesion.

  • PDF

Numerical Simulation of Inkjet Drop Formation in Piezo Inkjet Head (피에조 잉크젯 헤드의 액적 토출 형상 전산해석)

  • Joo, Youngcheol;Park, Sangkug;Kwon, Key-Si
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.641-647
    • /
    • 2016
  • A drop-on-demand inkjet is used widely for various applications. Therefore, it is important to understand the jetting behavior of the drop from the piezo inkjet. In this study, to predict the jetting behavior, VOF (Volume-of-Fluid) simulation techniques were used and compared with the experimental results. The experimentally measured meniscus movement was used as the input data for the simulation. To verify the simulation, the measured jetting behavior of the mixture fluids of ethylene glycol and IPA (isopropyl alcohol), which has a mixing ratio of 50:50, was used. The numerical simulation of the drop formation using various mixture ratios and its comparison with the measured drop formation confirmed that the proposed method can predict the actual jetting. On the other hand, the satellite drop behavior showed slight differences because the small sized droplet is subject to a more aerodynamic effect during flight because the kinetic energy of the satellite droplet is far smaller than that of the main droplet.