• Title/Summary/Keyword: Volume median diameter.

Search Result 31, Processing Time 0.032 seconds

Size Distribution of Droplets Sprayed by an Orchard Sprayer (과수방제기 살포입자의 직경 분포특성)

  • 구영모;신범수;김상헌
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2001
  • Generated agri-chemical droplets by orchard sprayers are evaporated regenerated and transported along wind streams. The droplets are deposited to targets after changing their sizes, affecting the retention of droplets. An orchard sprayer, designed for spraying grapevines was studied on the spatial distribution of droplet size. The experimental variables were spray direction (0, 22.5, 45, 67.5 and 90˚), distance(2.5, 3.0 and 3.5 m) and fan speed (2,075 and 3,031 rpm). Droplet sizes were converted and analyzed from spray stains, sampled using water sensitive papers. The number median diameter (NMD) increased with an increase of the distance due to disappeared fine droplets (<50 ㎛): however, the volume median diameter (VMD) decreased due to shrunken large droplets (>100 ㎛). Fast fan speed delivered large droplets to 3.5 m, but the spatial distributions of NMD and VMD were not uniform. Slower fan speed decreased the possibility of evaporation and drift; therefore, plenty of droplets were maintained up to 3.0 m. The upward blasting distance was limited within 3 m, but the limit to the ground level was extended to 3.5 m. Concentrated wind and droplets to the ground level should be redistributed to upper canopy direction, leading more uniform deposits. High speed wind and system pressure should be avoided because of generating fine droplets, which would be disappeared and drifted away.

  • PDF

Effect of the Pore Structure of Concrete on the Compressive Strength of Concrete and Chloride Ions Diffusivity into the Concrete

  • Kim, Jin-Cheol;Paeng, Woo-Seon;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.345-351
    • /
    • 2003
  • The transport characteristics of deleterious ions such as chlorides depend on the pore structures of concrete and are the major factors in the durability of concrete structures in subjected to chloride attack such as in marine environments. In this paper, the effect of the pore structure on compressive strength and chloride diffusivity of concrete was investigated. Six types of concretes were tested. The pore volume of concrete containing mineral admixtures increased in the range of 3∼30nm due to micro filling effect of hydrates of the mineral admixtures. There was a good correlation between the median pore diameter, the pore volume above 50nm and compressive strength of concrete, but there was not a significant correlation between the total pore volume and compressive strength. The relationship between compressive strength and chloride diffusivity were not well correlated, however, pore volume above 50nm were closely related to the chloride diffusion coefficient.

Concrete Median Barrier Performance Improvement using Stiffness and Flexibility Reinforcement (강성 및 연성 보강을 통한 콘크리트 중앙분리대 성능 향상 분석)

  • Kim, Chan-Hee;Kim, Woo Seok;Lee, Ilkeun;Lee, Jaeha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • Recently, there was an collision accident of vehicle-concrete median barrier and unfortunately, passengers were killed by exceeded capacity of concrete median. Therefore, improving the capacity of concrete median barrier is need to reduce damage. Accordingly, in this study, appropriate collision model verified by using the FE analysis program LS-Dyna and recommend a concrete median barrier section. The improvement parameters such as wire mesh diameter, steel plate, rubber pad were selected for improved capacity of the median barrier. Finally, section of concrete median barrier improved wire mesh diameter decreased volume loss, section of concrete median barrier improved rubber pad accepted impact loading and increased elastic area.

Effects of Volume Fraction & Particle Size of Alumina on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature (저온 소성용 유리-알루미나 복합체에서 알루미나의 부피분율과 입자크기에 따른 소결 거동)

  • 박덕훈;김봉철;김정주;박이순
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.638-644
    • /
    • 2000
  • The sintering behaviors of the glass-alumina composites for low firing temperature were investigated as functiions of the volume fraction of alumina powder and the particle size with respect to porosity and pore shape. As the volume fraction of alumina powder was increased or the particle size of it was decreased, the sintering temperature of open pore-closing was raised. When the volume fractions of alumina which had 2.19$\mu\textrm{m}$ median diameter were increased with 20, 30, 40, and 50%, the sintering temperatures of open pore-closing were 425, 450, 475, and 500$^{\circ}C$. And when the median particle size of alumina was diminished from 2.19$\mu\textrm{m}$ to 0.38$\mu\textrm{m}$, the sintering temperature of open pore-closing was increased from 450$^{\circ}C$ to 475$^{\circ}C$. Especially, the sintering temperature, which showed maximum density, was corresponded with the stage of open pore-closing and after achieving maximum density over heating resulted in dedensification of specimen, so called, over-firing behavior.

  • PDF

Heat Transfer Characteristics of Liquid-Solid Suspension Flow in a Horizontal Pipe

  • Ku, Jae-Hyun;Cho, Hyun-Ho;Koo, Jeong-Hwan;Yoon, Suk-Goo;Lee, Jae-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1159-1167
    • /
    • 2000
  • Particles in liquid-solid suspension flow might enhance or suppress the rate of heat transfer and turbulence depending on their size and concentration. The heat transfer characteristics of liquid-solid suspension in turbulent flow are not well understood due to the complexibility of interaction between solid particles and turbulence of the carrier fluid. In this study, the heat transfer coefficients of liquid-solid mixtures are investigated using a double pipe heat exchanger with suspension flows in the inner pipe. Experiments are carried out using spherical fly ash particles with mass median diameter ranging from 4 to $78{\mu}m$. The volume concentration of solids in the slurry ranged from 0 to 50% and Reynolds number ranged from 4,000 to 11,000. The heat transfer coefficient of liquid-solid suspension to water flow is found to increase with decreasing particle diameter. The heat transfer coefficient increases with particle volume concentration exhibiting the highest heat transfer enhancement at the 3% solid volume concentration and then gradually decreases. A correlation for heat transfer to liquid-solid flows in a horizontal pipe is presented.

  • PDF

Adsorption properties of surface - modified activated carbon (활성탄의 표면 구조 변화에 따른 흡착 특성 연구)

  • 김정렬;서문원;신창호;김영호;이근회;지상운
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.191-197
    • /
    • 1994
  • Relationships between surface structure and adsorption properties of smoke components were investigated in surface-modified and un-modified activated carbon filter cigarettes. Commercially available activated carbon was treated with nitric acid and hydrogen peroxide as oxidant, and their pore volume, surface structure, BET surface area, pore type and size were studied. BET surface area and pore volume were decreased by nitric acid treatment, but median pore diameter was 8.1 $\AA$, which showed better development of pore compared with that of un-modified activated carbon, 6.9 $\AA$. In case of hydrogen peroxide treatment, BET surface area and pore volume were increased. Their pore was found to be a slit type based on V-t plot analysis. Neutralization capacities for bases of different strength (NaHCO3, Na2CO3, NaOEt and NaOH) showed that the majority of the acidic surface groups are of weak acidity. Modification of the activated carbon surface led to a slight change in adsorption properties when analyzing the smoke of triple-filter cigarette with surface-modified activated carbon.

  • PDF

Indirect Verification of the Icing Test Condition Using Ice Thickness (얼음두께를 이용한 결빙시험조건의 간접 확인기법)

  • Kim, Yoo Kyung;Park, Nameun;Choi, Gio
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.944-951
    • /
    • 2018
  • Artificial icing test and wind tunnel test can be performed to reduce the development period when a rotorcraft is required operation under icing situations. Artificial icing test of the KUH(Korean Utility Helicopter) was performed in advance to verify anti-icing and de-icing performance before natural icing test. Although high-precision sensor, the CCP(Cloud Combination Probe) is used to measure icing test condition parameters such as LWC(Liquid Water Content) and MVD(Median Volume Diameter), the measured values need to be verified in various methods due to the possibility of uncertainties which are the test atmosphere environment, sensor errors, and etc. The calculated LWC from the ice thickness cumulated on the fuselage of the KUH is compared to the measured value by CCP, and the results show the effective indirect method to check the test conditions.

Maximum diameter versus volumetric assessment for the response evaluation of vestibular schwannomas receiving stereotactic radiotherapy

  • Choi, Youngmin;Kim, Sungmin;Kwak, Dong-Won;Lee, Hyung-Sik;Kang, Myung-Koo;Lee, Dong-Kun;Hur, Won-Joo
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.114-121
    • /
    • 2018
  • Purpose: To explore the feasibility of maximum diameter as a response assessment method for vestibular schwannomas (VS) after stereotactic radiosurgery or fractionated stereotactic radiotherapy (RT), we analyzed the concordance of RT responses between maximum diameters and volumetric measurements. Materials and Methods: Forty-two patients receiving curative stereotactic radiosurgery or fractionated stereotactic RT for VS were analyzed retrospectively. Twelve patients were excluded: 4 did not receive follow-up magnetic resonance imaging (MRI) scans and 8 had initial MRI scans with a slice thickness >3 mm. The maximum diameter, tumor volume (TV), and enhanced tumor volume (ETV) were measured in each MRI study. The percent change after RT was evaluated according to the measurement methods and their concordances were calculated with the Pearson correlation. The response classifications were determined by the assessment modalities, and their agreement was analyzed with Cohen kappa statistics. Results: Median follow-up was 31.0 months (range, 3.5 to 86.5 months), and 90 follow-up MRI studies were analyzed. The percent change of maximum diameter correlated strongly with TV and ETV (r(p) = 0.85, 0.63, p = 0.000, respectively). Concordance of responses between the Response Evaluation Criteria in Solid Tumors (RECIST) using the maximum diameters and either TV or ETV were moderate (kappa = 0.58; 95% confidence interval, 0.32-0.85) or fair (kappa = 0.32; 95% confidence interval, 0.05-0.59), respectively. Conclusions: The percent changes in maximum diameter and the responses in RECIST were significantly concordant with those in the volumetric measurements. Therefore, the maximum diameters can be used for the response evaluation of VS following stereotactic RT.

Aerosol Losses in a 100L $Tedlar^{(R)}$ Bag

  • Oh, Sewon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E2
    • /
    • pp.61-68
    • /
    • 2004
  • Aerosol losses in a 100L Tedlar$^{(R)}$ bag were investigated for the aerosols with number median diameter of 0.05 ${\mu}{\textrm}{m}$ and number concentration of 6.4 ${\times}$ 10$^4$ cm$^{-3}$ . Over a 1 hr period, loss of particles in the bag is apparent, and the volume decrease with time is significant. The number concentration, surface area, and volume concentration of the aerosols decreased to 34, 50, and 52% of the initial value in 30 min, respectively. This indicates that deposition to the walls was the main loss process for aerosols in the Tedlar$^{(R)}$ bag. Theoretical calculations showed that coagulations and deposition by diffusion and gravitational sedimentation would not change aerosol characteristics significantly, and the electrical force was the dominant loss process for particles in the Tedlar$^{(R)}$ bag over a 1 hr period.eriod.

Seasonal Variation of Size Distributions of Polycyclic Aromatic Hydrocarbons in Air Particulates (대기 부유분진중 다환방향족 탄화수오류의 계절적 입경농도 분포 변이)

  • Chung, Yong;Park, Seong-Eun;Hwang, Man-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.577-588
    • /
    • 1998
  • Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion and, in urban area atmosphere, are mainly traffic or heating in origin. Size-segregated aerosol samples were collected on the Eixth story of Shinchon on the Yonsei campus, using a high-volume cascade impactor, between August 1994 and September 1995. Ten PAHs were analyzed by GC/MSD. The size distribution of PAH-containing particulates followed approximately a log-normal relationship with the majority of PAH content associated with particles below 3.0mm. PAHs concentration in submicron particles increased during the winter months. The Mass Median Diameter (MMD) value of annual particulates in the heavy traffic area of Shinchon shows about 1.6 pm. The MMD values of air particulate in winter were the lowest values and similar to that in summer, while MMD values of seasonal PAHs were generally lower than 1.0 pm. Among the PAHs, MMD values of PAHs with the more than 5 benzen ring were averagely lower than those with 4 benzin rings. Especially MMD's of dibenzo (a, h) anthracene in winter was clearly lower than in summer. This reason may be caused by fuels used for heating. In this area, 50∼80% PAHs mass was particles smaller than 1.0mm aerodynamic diameter in size range, and the MMD values of PAHs lower than those of other country's area.

  • PDF