• Title/Summary/Keyword: Volume fraction

Search Result 2,463, Processing Time 0.029 seconds

A study on operation and management for TOC removal of public sewage treatment works (하수처리시설에서 총유기탄소(TOC) 처리를 위한 운영·관리 고찰)

  • Jeong, Dong-Hwan;Chung, Hyenmi;Cho, Yangseok;Kim, Eunseok;Kim, Changsoo;Park, Junwon;Lee, Wonseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.535-550
    • /
    • 2018
  • Total organic carbon (TOC) will replace chemical oxygen demand ($COD_{Mn}$) as an effluent water quality standard in public sewage treatment works (PSTWs) from 2021 in Korea. To ensure effective control of TOC in the effluent, investigation was carried out into TOC levels and sewage treatment operation factors in five target PSTWs using anaerobic-anoxic-aerobic ($A_2O$) processes, media, membrane, and sequencing batch reactor (SBR) technologies. TOC removal efficiencies appeared to be 93-96% on average. As a fraction of TOC, biodegradable dissolved organic carbon (BDOC) was reduced from 64% in the influent to 9% in the effluent in these PSTWs. During the investigation, biological treatment processes were applied flexibly for operation factors such as HRT, SRT, MLSS, F/M ratios and BOD volume loads, based on the influent characteristics and design conditions. As a result, we suggest efficient operating conditions in PSTWs by evaluating relationships between TOC removal and operation factors.

Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

  • Na, Min Young;Park, Sung Hyun;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1256-1261
    • /
    • 2018
  • Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (${\Delta}T_x$) and the difference in specific heat between the frozen glass state and the supercooled liquid state (${\Delta}C_p$). The measured ${\Delta}T_x$ and ${\Delta}C_p$ values show a strong composition dependence. However, the composition showing the highest ${\Delta}T_x$ and ${\Delta}C_p$ does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ${\Delta}T_x$ and ${\Delta}C_p$ may be related to enhancement of icosahedral SRO near $T_g$ during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are $Al_{87}Ni_3Y_{10}$, $Al_{85}Ni_5Y_{10}$, and $Al_{86}Ni_5Y_9$.

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal strain gradient theory

  • Arefi, Mohammad;Pourjamshidian, Mahmoud;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.157-171
    • /
    • 2019
  • In this research, the dynamic instability region (DIR) of the sandwich nano-beams are investigated based on nonlocal strain gradient elasticity theory (NSGET) and various higher order shear deformation beam theories (HSDBTs). The sandwich piezoelectric nano-beam is including a homogenous core and face-sheets reinforced with functionally graded (FG) carbon nanotubes (CNTs). In present study, three patterns of CNTs are employed in order to reinforce the top and bottom face-sheets of the beam. In addition, different higher-order shear deformation beam theories such as trigonometric shear deformation beam theory (TSDBT), exponential shear deformation beam theory (ESDBT), hyperbolic shear deformation beam theory (HSDBT), and Aydogdu shear deformation beam theory (ASDBT) are considered to extract the governing equations for different boundary conditions. The beam is subjected to thermal and electrical loads while is resting on Visco-Pasternak foundation. Hamilton principle is used to derive the governing equations of motion based on various shear deformation theories. In order to analysis of the dynamic instability behaviors, the linear governing equations of motion are solved using differential quadrature method (DQM). After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various shear deformation theories, nonlocal parameter, strain gradient parameter, the volume fraction of the CNTs, various distributions of the CNTs, different boundary conditions, dimensionless geometric parameters, Visco-Pasternak foundation parameters, applied voltage and temperature change on the dynamic instability characteristics of sandwich piezoelectric nano-beam.

Nonlinear thermoelastic analysis of FGM thick plates

  • Bouhlali, Malika;Chikh, Abdelbaki;Bouremana, Mohammed;Kaci, Abdelhakim;Bourada, Fouad;Belakhdar, Khalil;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.439-457
    • /
    • 2019
  • In this paper, a new application of a four variable refined plate theory to analyze the nonlinear bending of functionally graded plates exposed to thermo-mechanical loadings, is presented. This recent theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces, and similarly, the shear components do not contribute toward bending moments. The derived transverse shear strains has a quadratic variation across the thickness that satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. The solutions are achieved by minimizing the total potential energy. The non-linear strain-displacement relations in the von Karman sense are used to derive the effect of geometric non-linearity. It is concluded that the proposed theory is accurate and simple in solving the nonlinear bending behavior of functionally graded plates.

On the Feasibility of Freak Waves Formation within the Harbor Due to the Presence of Infra-Gravity Waves of Bound Mode Underlying the Ever-Present Swells (Bound Mode의 외중력파에 의한 항내 이상파 생성가능성에 대하여)

  • Cho, Yong Jun;Bae, Jung Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • We carry out the numerical simulation to test a hypothesis that freak waves can be triggered by the infragravity waves of bound mode underlying the ever-present swells and its constructive interaction with swells using the Tool Box called the ihFoam that has its roots on the OpenFoam, and Bi-spectrum. Numerical simulation is implemented for the SamChcuk LNG Plant where freak waves have been reported in front of the private wharf during its construction phase due to the uncompleted northern breakwater. Infra-gravity waves of bound mode is generated using the difference wave-wave interaction between the local wind waves of 7 s and a swell of 11.4 s based on the Bi-spectrum. For the sake of comparison, numerical simulation for infra-gravity waves of free mode is also carried out. Numerical results show that stem waves along the private wharf for SamChcuk LNG Plant can be triggered by the infra-gravity waves of bound mode coming from the north, which eventually leads to freak waves when encounters the reflected waves from the south jetty.

Fluidity Performance Evaluation of Low Viscosity Typed Superplasticizer for Cement-Based Materials Incorporating Supplementary Cementitious Materials (혼화재료를 치환한 시멘트 계열 재료에 대한 저점도형 고성능 감수제의 유동 성능 평가)

  • Son, Bae-Geun;Lee, Hyang-Seon;Lee, You-Jeong;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2019
  • The aim of the research is to provide a fundamental data of low viscosity typed superplasticizer (SP) on cement-based materials incorporating various supplementary cementitious materials (SCMs). As a relatively new product, low-viscosity typed SP has introduced for high performance concrete with high viscosity due to its high solid volume fraction with various SCMs. However, there are not enough research or reports on the performance of the low viscosity typed SP with cement-based materials incorporting SCMs. hence, in this research, for cement paste and mortar, fluidity and rheological properties were evaluated when the mixtures contained various SCMs such as fly ash, blast furnace slag, and silica fume. From the experiment conducted, it was checked that the low viscosity typed superplasticizer decreased the plastic viscosity of the mixture as well as the yield stress. From the results of this research, it is expected to contribute on introduction of new type SP for high performance concrete or high-viscous cementitious materials.

Superconducting properties of MgB2 superconductors in-situ processed using various boron powder mixtures

  • Kang, M.O.;Joo, J.;Jun, B.H.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.45-50
    • /
    • 2021
  • In this study, the effect of the size of B powder on the critical current density (Jc) of MgB2 prepared by an in situ reaction process was investigated. Various combinations of B powders were made using a micron B, ball-milled B and nano B powders. Micron B powder was reduced by ball milling and the milled B powder was mixed with the micron B or nano B powder. The mixing ratios of the milled B and micron or nano B were 100:0, 50:50 and 0:100. Non-milled micron B powder was also mixed with nano powder in the same ratios. Pellets of (2B+Mg) prepared with various B mixing ratios were heat-treated to form MgB2. Tc of MgB2 decreased slightly when the milled B was used, whereas the Jc of MgB2 increased with increasing amount of the milled B or the nano powder. The used of the milled B and nano B power promoted the formation MgB2 during heat treatment. In addition to the enhanced formation of MgB2, the use of the powders reduced the grain size of MgB2. The use of the milled and nano B powder increased the Jc of MgB2. The highest Jc was achieved when 100% nano B powder was used. The Jc enhancement is attributed to the high volume fraction of the superconducting phase (MgB2) and the large grain boundaries, which induces the flux pinning at the magnetic fields.

Isogeometric Analysis of FGM Plates in Combination with Higher-order Shear Deformation Theory (등기하해석에 의한 기능경사복합재 판의 역학적 거동 예측)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.832-841
    • /
    • 2020
  • Purpose: This study attempts at analyzing mechanical response of functionally graded material (FGM) plates in bending. An accurate and effective numerical approach based on isogeometric analysis (IGA) combined with higher-order shear deformation plate theory to predict the nonlinear flexural behavior is developed. Method: A higher-order shear deformation theory(HSDT) which accounts for the geometric nonlinearity in the von Karman sense is presented and used to derive the equilibrium and governing equations for FGM plate in bending. The nonlinear equations are solved by the modified Newton-Raphson iterative technique. Result: The volume fraction, plate length-to-thickness ratio and boundary condition have signifiant effects on the nonlinear flexural behavior of FGM plates. Conclusion: The proposed IGA method can be used as an accurate and effective numerical tool for analyzing the mechanical responses of FGM plates in flexure.

Microfracture Mechanism of Squeeze Cast AZ51-xSn Magnesium Alloys (용탕단조법으로 제조된 AZ51-xSn 마그네슘 합금의 미세파괴기구)

  • Kim, Byeong Ho;Do, Jeonghyeon;Lee, Sunghak;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.797-810
    • /
    • 2009
  • A study was made of the effects of a Sn addition on the microstructure and microfracture mechanism of squeeze cast AZ51-xSn magnesium alloys. Microstructural observation, in situ fracture testing, and fractographic observations were conducted on these alloys to clarify the microfracture process. The microstructural analyses indicated that $Mg_2Sn$ particles as well as $Mg_{17}Al_{12}$ particles precipitated mainly along the solidification cell boundaries; the volume fraction of these hard particles increased as the amount of added Sn increased, with increased the strength. From in situ fracture observations of the AZ51-7Sn alloy, coarse precipitates located on the cell boundaries worked as easy crack propagation sites and caused abrupt intercellular fracturing. On the other hand, the overall fracture properties of the AZ51-3Sn alloy improved because crack propagation proceeded into the Mg matrix rather than into the cell boundaries as twins developed actively, as confirmed by an R-curve analysis. These findings suggest that the addition of 3~5 wt.% Sn is effective in improving both the tensile and fracture properties on the basis of well-developed twins, the blocking of crack propagation, and crack blunting.