• Title/Summary/Keyword: Volume crystallization

Search Result 91, Processing Time 0.024 seconds

Fabrication and Characterization of a Flexible PVDF Fiber-based Polymer Composite for High-performance Energy Harvesting Devices

  • Nguyen, Duc-Nam;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.205-215
    • /
    • 2019
  • A flexible polyvinylidene fluoride (PVDF)/polydimethylsiloxane (PDMS) composite prototype with high piezoelectricity and force sensitivity was constructed, and its huge potential for applications such as biomechanical energy harvesting, self-powered health monitoring system, and pressure sensors was proved. The crystallization, piezoelectric, and electrical properties of the composites were characterized using an X-ray diffraction (XRD) experiment and customized experimental setups. The composite can sustain up to 100% strain, which is a huge improvement over monolithic PVDF fibers and other PVDF-based composites in the literature. The Young's modulus is 1.64 MPa, which is closely matched with the flexibility of the human skin, and shows the possibility for integrating PVDF/PDMS composites into wearable devices and implantable medical devices. The $300{\mu}m$ thick composite has a 14% volume fraction of PVDF fibers and produces high piezoelectricity with piezoelectric charge constants $d_{31}=19pC/N$ and $d_{33}=34pC/N$, and piezoelectric voltage constants $g_{31}=33.9mV/N$ and $g_{33}=61.2mV/N$. Under a 10 Hz actuation, the output voltage was measured at 190 mVpp, which is the largest output signal generated from a PVDF fiber-based prototype.

Real-time Transformation of FePt Nanoparticles to L10 Phase by the Gas Phase Synthesis (기상합성공정을 이용한 FePt 나노입자의 실시간 L10 상변화)

  • Lee, Ki-Woo;Lee, Chang-Woo;Kim, Soon-Gil;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • Real-time formation of $L1_0$ phase of FePt nanoparticles in the gas phase during ultrasonic-spray pyrolysis is first discussed in the present study. Without any post heat treatment, $L1_0$ phase of FePt nanoparticles appeared at the temperature above $900^{\circ}C$ in the gas phase synthesis. X-ray diffractometry (XRD) and transmission electron microscopy (TEM) studies revealed that FePt nanoparticles less than 10 nm in size contained small volume of $L1_0$ fct phase. However, in other samples obtained at the temperature below $900^{\circ}C$, iron oxide phase co-existed and no evidence of phase transformation was found. Thus, it is anticipated that the time of flight of particles required for crystallization and phase transformation was extended according to the increase of the collision rate. Finally, magnetic properties represented by coercivity and saturation magnetization and functional groups on the particle surface were discussed based on VSM and FT-IR results.

Cloning, expression, purification, and crystallization of Xoo0878, β-ketoacyl-acyl carrier protein synthase III (FabH), from Xanthomonas oryzae pv. oryzae

  • Ngo, Ho-Phuong-Thuy;Nguyen, Diem-Quynh;Kim, Seunghwan;Kim, Jeong-Gu;Ahn, Yeh-Jin;Kang, Lin-Woo
    • Biodesign
    • /
    • v.7 no.2
    • /
    • pp.35-37
    • /
    • 2019
  • Xanthomonas oryzae pv. oryzae (Xoo) is a plant pathogen, which causes a bacterial blight of rice. The bacterial blight is one of the most devastating diseases of rice in most of the rice growing countries and there is no effective pesticide against bacterial blight. The β-ketoacyl-acyl carrier protein synthase III (FabH) plays a key role in fatty acid synthesis (FAS) and is a promising drug target for the development of antibacterial agents. Xoo0878 gene, a fabH gene, from Xoo was cloned and its gene product Xoo0878 was expressed, purified and crystallized. Xoo0878 crystal diffracted to 2.1Å resolution and belonged to the triclinic space group P1, with unit-cell parameters a = 57.3Å, b = 64.7Å, c = 104.2Å and α = 81.6°, β = 84.7°, γ = 74.4°. There are four monomers in the asymmetric unit, with a corresponding crystal volume per protein weight of 2.65 Å3 Da-1 and a solvent content of 53.6%. Xoo0878 structure will be useful to develop new antibacterial agents against Xoo.

Synthesis and Characterization of Zeolite 4A on Activated Carbon Supports (활성탄 지지체상에서 제올라이트 4A 합성 및 특성)

  • Park, Jeong-Hwan;Suh, Jeong-Kwon;Jeong, Soon-Yong;Lee, Jung-Min;Doh, Myung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.204-210
    • /
    • 1997
  • Zeolite 4A-impregnated complex molecular sieve was prepared by hydrothermal reaction after aluminosilicate gel was penetrated into the pore of activated carbon granule. The crystals of zeolite 4A mainly were formed in the macropore of activated carbon, and their average diameter is $0.8{\mu}m$. The pore volume of activated carbon granule is $0.67m{\ell}/g$, and the pore volume of the sample including 21.6wt% of zeolite 4A crystal is $0.41m{\ell}/g$ decreasing the pore volume by 40% due to the crystallization of zeolite 4A crystals on the internal surface of activated carbon. The calcium ion exchange capacity of zeolite 4A-impregnated sample is 320mg $CaCO_3/g$ zeolite, and this value is almost the same as that of zeolite 4A powder. The crystal of zeolite 4A was not separated from the support of activated carbon granule in the course of ultrasonic dispersion. The adsorption isotherm of water on zeolite 4A-impregnated sample shows the intermediate shape between types, I and III. In addition, zeolite 4A-impregnated sample shows the hydrophilic and hydrophobic properties simultaneously.

  • PDF

Spalling of Intermetallic Compound during the Reaction between Electroless Ni(P) and Lead-free Solders (무전해 Ni(P)과 무연솔더와의 반응 중 금속간화합물의 spalling 현상에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin;Kang S. K.;Shih D. Y,;Lee Taek-Yeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.37-45
    • /
    • 2004
  • Electroless Ni(P) has been widely used for under bump metallization (UBM) of flip chip and surface finish layer in microelectronic packaging because of its excellent solderability, corrosion resistance, uniformity, selective deposition without photo-lithography, and also good diffusion barrier. However, the brittle fracture at solder joints and the spatting of intermetallic compound (IMC) associated with electroless Ni(P) are critical issues for its successful applications. In the present study, the mechanism of IMC spatting and microstructure change of the Ni(P) film were investigated with varying P content in the Ni(P) film (4.6,9, and $13 wt.\%$P). A reaction between Sn penetrated through the channels among $Ni_3Sn_4$ IMCs and the P-rich layer ($Ni_3P$) of the Ni(P) film formed a $Ni_3SnP$ layer. Thickening of the $Ni_3SnP$ layer led to $Ni_3Sn_4$ spatting. After $Ni_3Sn_4$ spatting, the Ni(P) film directly contacted the molten solder and the $Ni_3P$ phase further transformed into a $Ni_2P$ phase. During the crystallization process, some cracks formed in the Ni(P) film to release tensile stress accumulated from volume shrinkage of the film.

  • PDF

A Study on the Characterization of Neodymium Oxalate by Reaction Crystallization (반응성 결정화에 의한 네오디뮴 옥살레이트 특성 고찰)

  • Yoon, Ho-Sung;Kim, Chul-Joo;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.13 no.5
    • /
    • pp.37-44
    • /
    • 2004
  • In this study, neodymium oxalate powders were prepared by injecting oxalic acid to the neodymium chloride solution resulted from the acid leaching solution of NdFeB magnet scrap. The effect of experimental conditions on the characteristics of neodymium oxalate powders were investigated. Neodymium oxalate was aggregated by primary particles formed by nucleation, and average size of aggregates was affected by experimental conditions. In a constant volume, increase of reactants affected the average size of aggregate formed by collision of primary particles. In a constant concentration of reactants, agitation speed decreased the size of aggregate due to breakage of particles attached on the surface of aggregate. The number of primary particles decreased with increasing reaction temperature, and the size of aggregates decreased due to the decrease of collision probability. From the results of decomposition behavior of neodymium oxalate, oxalate decomposed from $400^{\circ}C$, and neodymium oxide began to crystallize at above $620^{\circ}C$.

$M\""{o}ssbauer$ Effet Studies on Nanocrystalline $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_6$ Alloy (초미세결정립 $ Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_6$ 합금의 $M\""{o}ssbauer$ 효과 연구)

  • 신영남;김재경;양재석;조익한;강신규
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • The crystallization behavior of the amorphous $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_{6}$ alloy with isothermal annealing at $552^{\circ}C$ was studied by $M\"{o}ssbauer$ spectroscopy. The amorphous phase was revealed to coexist together with $Do_{3}-FeSi$ nanocrystalline and Cu-duster in annealed alloys by $M\"{o}ssbauer$ spectrum analysis. At the early stage of crystallization, Si content of FeSi is high due to the creation of Cu-cluster, and decreases with annealing until 60 minutes, which results in the increase in the mean hyperfine field of FeSi, and thereafter keeps constant. After 60 minutes, the decrease in the mean hyperfine field of the residual armrphous, in spite of a slight change in the volume fraction of the FeSi and the residual armrphous, is caused by the increase in the content of Nb and B in residual amorphous phase. Both directions of the hyperfine field, those of the FeSi and the residual amorphous, become randomly oriented in about 60 minutes. For FeSi and Cu-duster, the Avrami exponents are 0.51 and O.65, the activation energies are 2.35 eV and 2.44 eV, and the incubation times are 2.4 minutes and 0.8 minutes respectively. Earlier formation of Cu-duster than that of FeSi is coincidence with the fact that Cu atom promotes the nucleation of the FeSi.

  • PDF

Petrochemical Study on the Micrographic Granite in the Wando Area (완도지역(莞島地域)에 분포하는 미문상화강암(微文象花崗岩)에 대한 암석화학적(岩石化學的) 연구(硏究))

  • Shin, In-Hyun;Nam, Ki-Sang;Kim, Hee-Nam;Park, Young-Seog;Ahn, Kun-Sang
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • Petrochemical study on the micrographic granite distributed in the Wando area, the southernmost part of the Yeongdong-Kwangju depression is performed to investigate the petrogenesis and differentiation processes of the granitic magma. Polarized light microscopy for modal analyses, electron probe microanalyses of feldspars and biotite, inductively coupled plasma analyses for major and trace element contents were adopted in the study. The lithology of the study area consists of Precambrian metasediments, Mesozoic volcanic and sedimentary rocks, and micrographic granite which intrude into the former. The micrographic granite in the Wando area are distributed in the shape of a cauldron. Modal and nonnative mineral analyses of the micrographic granite fall in the area of granite and granodiorite. The chemical composition indicates that the micrographic granite is I-type and magnetite series. The micrographic granite is characterized by more than 90% of micrographic texture in volume percent. Feldspars in the micrographic granite is alkali feldspars (Or, 45~93) and plagioclases (albite to oligoclase). The biotite has a intermediate composition between phlogopite and annite solid solution. The results of the petrochemical studies indicate that the granitic magma of calc-alkaline source materials reactivated in a compressional environment at the continental margin, and then was differentiated by fractional crystallization. The micrographic granite intruded into a shallow level of the crust (5~7 km) in the late Cretaceous.

  • PDF

Characterization of Chemically Stabilized $\beta$-cristobalite Synthesized by Solution-Polymerization Route

  • Lee, Sang-Jin
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.116-123
    • /
    • 1997
  • A chemically stabilized $\beta$-cristobalite, which is stabilized by stuffing cations of $Ca^{2+}$ and $Al^{3+}$, was prepared by a solution-polymerization route employing Pechini resin or PVA solution as a polymeric carrier. The polymeric carrier affected the crystallization temperature, morphology of calicined powder, and particle size distribution. In case of the polyvinyl alcohol (PVA) solution process, a fine $\beta$-cristobalite powder with a narrow particle size distribution (average particle size : 0.3$\mu\textrm{m}$) and a BET specific surface area of 72 $\m^2$/g was prepared by an attrition-milling for 1 h after calcination at 110$0^{\circ}C$ for 1h. Wider particle size distribution and higher specific surface area were observed for the $\beta$-cristobalite powder derived from Pechini resin. The cubie(P1-to-tetraganalb) phase transformation in polynystalline $\beta$-cristobalite was induced at approximately 18$0^{\circ}C$. Like other materials showing transformation toughening, a critical size effect controlled the $\beta$-to-$\alpha$ transformation. Densifed cristobalite sample had some cracks in its internal texture after annealing. The cracks, occurred spontaneoulsy on cooling, were observed in the sample with an average grain sizes of 4.0 $\mu\textrm{m}$ or above. In case of the sintered cristobalite having a composition of CaO.$2Al_2O_3$.40SiO$_2$, small amount of amorphous phase and slow grain growth during annealing were observed. Shear stress-induced transformation was also observed in ground specimen. Cristobalite having a composition of CaO.2Al2O3.80SiO2 showed a more sensitive response to shear stress than the CaO.$2Al_2O_3$.40SiO$_2$ type cristobalite. Shear-induced transformation resulted in an increase of volume about 13% in $\alpha$-cristobalite phase on annealing for above 10 h in the case of the former composition.

  • PDF

Crystallization and X-Ray Crystallographic Studies of Wild-Type and Mutant Tryptophan Synthase α-Subunits from Escherichia coli

  • Jeong, Mi Suk;Jang, Se Bok
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.219-222
    • /
    • 2005
  • The a-subunit of Escherichia coli tryptophan synthase (${\alpha}TS$), a component of the tryptophan synthase ${\alpha}_2{\beta}_2$ complex, is a monomeric 268-residues protein (Mr = 28,600). ${\alpha}TS$ by itself catalyzes the cleavage of indole-3-glycerol phosphate to glyceraldehyde-3-phosphate and indole, which is converted to tryptophan in tryptophan biosynthesis. Wild-type and P28L/Y173F double mutant ${\alpha}$-subunits were overexpressed in E. coli and crystallized at 298 K by the hanging-drop vapor-diffusion method. X-ray diffraction data were collected to $2.5{\AA}$ resolution from the wild-type crystals and to $1.8{\AA}$ from the crystals of the double mutant, since the latter produced better quality diffraction data. The wild-type crystals belonged to the monoclinic space group C2 ($a=155.64{\AA}$, $b=44.54{\AA}$, $c=71.53{\AA}$ and ${\beta}=96.39^{\circ}$) and the P28L/Y173F crystals to the monoclinic space group $P2_1$ ($a=71.09{\AA}$, b=52.70, $c=71.52{\AA}$ and ${\beta}=91.49^{\circ}$). The asymmetric unit of both structures contained two molecules of ${\alpha}TS$. Crystal volume per protein mass ($V_m$) and solvent content were $2.15{\AA}^3\;Da^{-1}$ and 42.95% for the wild-type and $2.34{\AA}^3\;Da^{-1}$ and 47.52% for the double mutant.