• Title/Summary/Keyword: Volume capturing method

Search Result 49, Processing Time 0.025 seconds

A well-balanced PCCU-AENO scheme for a sediment transport model

  • Ndengna, Arno Roland Ngatcha;Njifenjou, Abdou
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.359-384
    • /
    • 2022
  • We develop in this work a new well-balanced preserving-positivity path-conservative central-upwind scheme for Saint-Venant-Exner (SVE) model. The SVE system (SVEs) under some considerations, is a nonconservative hyperbolic system of nonlinear partial differential equations. This model is widely used in coastal engineering to simulate the interaction of fluid flow with sediment beds. It is well known that SVEs requires a robust treatment of nonconservative terms. Some efficient numerical schemes have been proposed to overcome the difficulties related to these terms. However, the main drawbacks of these schemes are what follows: (i) Lack of robustness, (ii) Generation of non-physical diffusions, (iii) Presence of instabilities within numerical solutions. This collection of drawbacks weakens the efficiency of most numerical methods proposed in the literature. To overcome these drawbacks a reformulation of the central-upwind scheme for SVEs (CU-SVEs for short) in a path-conservative version is presented in this work. We first develop a finite-volume method of the first order and then extend it to the second order via the averaging essentially non oscillatory (AENO) framework. Our numerical approach is shown to be well-balanced positivity-preserving and shock-capturing. The resulting scheme could be seen as a predictor-corrector method. The accuracy and robustness of the proposed scheme are assessed through a carefully selected suite of tests.

Tree-dimensional FE Analysis of Acoustic Emission of Fiber Breakage using Explicit Time Integration Method (외연적 시간적분법을 이용한 복합재료 섬유 파단 시 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • The numerical simulation is performed for the acoustic emission and the wave propagation due to fiber breakage in single fiber composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a fiber breakage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the parallel computing technology.

  • PDF

Electrochemical Properties of Lithium Sulfur Battery with Silicon Anodes Lithiated by Direct Contact Method

  • Kim, Hyung Sun;Jeong, Tae-Gyung;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.228-233
    • /
    • 2016
  • It is hard to employ the carbon materials or the lithium metal foil for the anode of lithium sulfur batteries because of the poor passivation in ether-based electrolytes and the formation of lithium dendrites, respectively. Herein, we investigated the electrochemical characteristics of lithium sulfur batteries with lithiated silicon anode in the liquid electrolytes based on ether solvents. The silicon anodes were lithiated by direct contact with lithium foil in a 1M lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) solution in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 1:1. They were readily lithiated up to ~40% of their theoretical capacity with a 30 min contact time. In particular, the carbon mesh reported in our previous work was employed in order to maximize the performance by capturing the dissolved polysulfide in sulfur cathode. The reversible specific capacity of the lithiated silicon-sulfur batteries with carbon mesh was 1,129 mAh/g during the first cycle, and was maintained at 297 mAh/g even after 50 cycles at 0.2 C, without any problems of poor passivation or lithium dendrite formation.

3D Ultrasound Panoramic Image Reconstruction using Deep Learning (딥러닝을 활용한 3차원 초음파 파노라마 영상 복원)

  • SiYeoul Lee;Seonho Kim;Dongeon Lee;ChunSu Park;MinWoo Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.255-263
    • /
    • 2023
  • Clinical ultrasound (US) is a widely used imaging modality with various clinical applications. However, capturing a large field of view often requires specialized transducers which have limitations for specific clinical scenarios. Panoramic imaging offers an alternative approach by sequentially aligning image sections acquired from freehand sweeps using a standard transducer. To reconstruct a 3D volume from these 2D sections, an external device can be employed to track the transducer's motion accurately. However, the presence of optical or electrical interferences in a clinical setting often leads to incorrect measurements from such sensors. In this paper, we propose a deep learning (DL) framework that enables the prediction of scan trajectories using only US data, eliminating the need for an external tracking device. Our approach incorporates diverse data types, including correlation volume, optical flow, B-mode images, and rawer data (IQ data). We develop a DL network capable of effectively handling these data types and introduce an attention technique to emphasize crucial local areas for precise trajectory prediction. Through extensive experimentation, we demonstrate the superiority of our proposed method over other DL-based approaches in terms of long trajectory prediction performance. Our findings highlight the potential of employing DL techniques for trajectory estimation in clinical ultrasound, offering a promising alternative for panoramic imaging.

Inferring Pedestrian Level of Service for Pathways through Electrodermal Activity Monitoring

  • Lee, Heejung;Hwang, Sungjoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1247-1248
    • /
    • 2022
  • Due to rapid urbanization and population growth, it has become crucial to analyze the various volumes and characteristics of pedestrian pathways to understand the capacity and level of service (LOS) for pathways to promote a better walking environment. Different indicators have been developed to measure pedestrian volume. The pedestrian level of service (PLOS), tailored to analyze pedestrian pathways based on the concept of the LOS in transportation in the Highway Capacity Manual, has been widely used. PLOS is a measurement concept used to assess the quality of pedestrian facilities, from grade A (best condition) to grade F (worst condition), based on the flow rate, average speed, occupied space, and other parameters. Since the original PLOS approach has been criticized for producing idealistic results, several modified versions of PLOS have also been developed. One of these modified versions is perceived PLOS, which measures the LOS for pathways by considering pedestrians' awareness levels. However, this method relies on survey-based measurements, making it difficult to continuously deploy the technique to all the pathways. To measure PLOS more quantitatively and continuously, researchers have adopted computer vision technologies to automatically assess pedestrian flows and PLOS from CCTV videos. However, there are drawbacks even with this method because CCTVs cannot be installed everywhere, e.g., in alleyways. Recently, a technique to monitor bio-signals, such as electrodermal activity (EDA), through wearable sensors that can measure physiological responses to external stimuli (e.g., when another pedestrian passes), has gained popularity. It has the potential to continuously measure perceived PLOS. In their previous experiment, the authors of this study found that there were many significant EDA responses in crowded places when other pedestrians acting as external stimuli passed by. Therefore, we hypothesized that the EDA responses would be significantly higher in places where relatively more dynamic objects pass, i.e., in crowded areas with low PLOS levels (e.g., level F). To this end, the authors conducted an experiment to confirm the validity of EDA in inferring the perceived PLOS. The EDA of the subjects was measured and analyzed while watching both the real-world and virtually created videos with different pedestrian volumes in a laboratory environment. The results showed the possibility of inferring the amount of pedestrian volume on the pathways by measuring the physiological reactions of pedestrians. Through further validation, the research outcome is expected to be used for EDA-based continuous measurement of perceived PLOS at the alley level, which will facilitate modifying the existing walking environments, e.g., constructing pathways with appropriate effective width based on pedestrian volume. Future research will examine the validity of the integrated use of EDA and acceleration signals to increase the accuracy of inferring the perceived PLOS by capturing both physiological and behavioral reactions when walking in a crowded area.

  • PDF

A Study on the Positively Charged Filter for Removing Fine Particles in Water (양전하가 부가된 수처리 필터의 입자제거특성에 관한 연구)

  • Jung, Sung-Hak;Kim, Jong-Won;Kim, Sang-Hee;Jeon, Byung-Heon;Lee, Seung-Gap;Lee, Jae-Keun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.454-460
    • /
    • 2012
  • The purpose of the present work is to investigate the removal characteristics of positively charged filters for capturing negatively charged particles such as bacteria and virus in water. In order to reduce the pressure drop and increase the filtration efficiency, the filter media, modified by charge modifier having positive functional groups, is developed and evaluated. Improved liquid filters have been developed with the modified surface charge to capture and adsorb particles by electrokinetic interaction between the filter surface and particles contained in an aqueous liquid. The positively charged filter media is composed of glass fiber, cellulose and poly-ethylenimine resin for positively charging with the variation of volume ratio. The zeta potential value of the positively charged filter is +37.92 mV at the glass fiber and cellulose content ratio of 50 : 50 with resin content of 100%, while that of the PSL test particle is -23.5 mV at pH 7. The removal efficiency of the electro-positively charged filter is 98% for PSL particles of 0.11 ${\mu}m$, while that of the negatively charged filter is 7%. The positively charged filter media showed the potential to be an effective method for removing fine particles from the contaminated water for liquid filtration.

Comparative analysis of turbulence models in hydraulic jumps

  • Lobosco, Raquel J.;da Fonseca, David O.;Jannuzzia, Graziella M.F.;Costa, Necesio G.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.339-350
    • /
    • 2019
  • A numerical simulation of the incompressible multiphase hydraulic jump flow was performed to compare the interface prediction through the use of the three RANS turbulence models: $k-{\varepsilon}$, $RNGk-{\varepsilon}$ and SST $k-{\omega}$. A three dimensional no submerged hydraulic jump and a two dimensional submerged hydraulic jump were modeled. Both the geometry and the mesh were created using the open source Gmsh code. The project's geometry consists of a rectangular channel with length and height differences between the two dimensional and three dimensional simulations. Uniform hexahedral cells were used for the mesh. Three refining meshes were constructed to allow to verify simulation convergence. The Volume of Fluid (abbr. VOF) method was used for treatment of the air-water surface. The turbulence models were evaluated in three distinct set up configurations to provide a greater accuracy in the flow representation. In the two-dimensional analysis of a submerged hydraulic jump simulation, the turbulence model RNG RNG $k-{\varepsilon}$ provided a better interface adjust with the experimental results than the model $k-{\varepsilon}$ and SST $k-{\omega}$. In the three-dimensional simulation of a no-submerged hydraulic jump the k-# showed better results than the SST $k-{\omega}$ and RNG $k-{\varepsilon}$ capturing the height and length of the ledge with a better fit with the experimental results.

Comparison of Volume of Fluid (VOF) type Interface Capturing Schemes using Eulerian Grid System (오일러 격자체계에서 유체율 함수에 기초한 경계면 추적기법의 비교)

  • Kim, Do-Sam;Kim, Tag-Gyeom;Shin, Bum-Shick;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The application of multiphase flows is increasingly being applied to analyze phenomena such as single phase flows where the fluid boundary changes continuously over time or the problem of mixing a liquid phase and a gas phase. In particular, multiphase flow models that take into account incompressible Newtonian fluids for liquid and gas are often applied to solve the problems of the free water surface such as wave fields. In general, multi-phase flow models require time-based the surface tracking of each fluid's phase boundary, which determines the accuracy of the final calculation of the model. This study evaluates the advection performance of representative VOF-type boundary tracking techniques applied to various CFD numerical codes. The effectiveness of the FCT method to control the numerical flux to minimize the numerical diffusion in the conventional VOF-type boundary tracking method and advection calculation was mainly evaluated. In addition, the possibility of tracking performance of free surface using CIP method (Yabe and Aoki, 1991) was also investigated. Numerical results show that the FCT-VOF method introducing an anti-diffusive flux to precent excessive diffusion is superior to other methods under the confined conditions in this study. The results from this study are expected to be used as an important basic data in selecting free surface tracking techniques applied to various numerical codes.

Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes (잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의)

  • Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.743-752
    • /
    • 2019
  • The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.