Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.3.228

Electrochemical Properties of Lithium Sulfur Battery with Silicon Anodes Lithiated by Direct Contact Method  

Kim, Hyung Sun (Center for Energy Convergence, Korea Institute of Science and Technology)
Jeong, Tae-Gyung (Center for Energy Convergence, Korea Institute of Science and Technology)
Kim, Yong-Tae (School of Mechanical Engineering, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.3, 2016 , pp. 228-233 More about this Journal
Abstract
It is hard to employ the carbon materials or the lithium metal foil for the anode of lithium sulfur batteries because of the poor passivation in ether-based electrolytes and the formation of lithium dendrites, respectively. Herein, we investigated the electrochemical characteristics of lithium sulfur batteries with lithiated silicon anode in the liquid electrolytes based on ether solvents. The silicon anodes were lithiated by direct contact with lithium foil in a 1M lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) solution in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 1:1. They were readily lithiated up to ~40% of their theoretical capacity with a 30 min contact time. In particular, the carbon mesh reported in our previous work was employed in order to maximize the performance by capturing the dissolved polysulfide in sulfur cathode. The reversible specific capacity of the lithiated silicon-sulfur batteries with carbon mesh was 1,129 mAh/g during the first cycle, and was maintained at 297 mAh/g even after 50 cycles at 0.2 C, without any problems of poor passivation or lithium dendrite formation.
Keywords
Lithiated silicon anode; Sulfur cathode; Lithium-sulfur;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. D. Rauh, K. M. Ahraham, G. F. Pearson, J. K. Supreant and S. J. Brummer, J. Electrochem. Soc., 1979, 126, 523-527.   DOI
2 E. Peled, A. Gorenshtein, M. Segal and Y. Sternberg, J. Power Sources, 1989, 26, 269-271.   DOI
3 E. Peled, Y. Sternberg, A. Gorenshtein and Y. Lavi, J. Electrochem. Soc., 1989, 136, 1621-1625.   DOI
4 N. Liu, L. Hu, M. T. McDowell, A. Jackson and Y. Cui, ACS Nano, 2011, 5, 6487-6493.   DOI
5 R. Elazari, G. Salitra, G. Gershinsky, A. Panchenko and D. Aurbach, Electrochem. Commun., 2012, 14, 21-24.   DOI
6 J. Hassoun, J. Kim, D.-J. Lee, H.-G. Jung, S.-M. Lee and Y.-K. Sun, J. Power Sources, 2012, 202, 308-313.   DOI
7 Y. Yan, Y.-X. Yin, S. Xin, J. Su, Y. Guo and L. Wan, Electrochim. Acta, 2013, 91, 58-61.   DOI
8 Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong and Y. Cui, Nano Lett., 2010, 10, 1486-1491.   DOI
9 L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. S. Lao, R. S. Yang, Y. Dai and Z. L. Wang, Adv. Mater., 2007, 19, 3712-3716.   DOI
10 N. Liu, L. Hu, M. T. McDowell, A. Jackson and Y. Cui, ACS Nano, 2011, 5, 6487-6493.   DOI
11 T.-G. Jeong, Y. H. Kim, H.-H. Chun, H. S. Kim, B. W. Cho and Y.-T. Kim, Chem. Commun., 2013, 49, 11107-11109.   DOI
12 Y.-J. Choi, K.-W. Kim, H.-J. Ahn and J.-H. Ahn, J. Alloys Compd., 2008, 449, 313-316.   DOI
13 X. Zhu, Z. Wen, Z. Gu and Z. Lin, J. Power Sources, 2005, 139, 269-273.   DOI
14 J. R. Akridge, Y. V. Mikhaylik and N. White, Solid State Ionics, 2004, 175, 243-245.   DOI
15 J. L. Wang, J. Yang, J. Y. Xie, N, X. Xu and Y. Li, Electrochem. Commun., 2002, 4, 499-502.   DOI
16 D. Marmorstein, T. H. Yu, K. A. Striebel, F. R. McLarnon, J. Hou and E. J. Cairns, J. Power Sources, 2000, 89, 219-226.   DOI
17 S. Kim, Y. Jung and S.-J. Park, Electrochim. Acta, 2007, 52, 2116-2122.   DOI
18 H. S. Kim, K. Y. Chung and B. W. Cho, J. Power Sources, 2009, 189, 108-113.   DOI
19 J.-H. Kim, H. Kim and H.-J. Sohn, Electrochem. Commun., 2005, 7, 557-561.   DOI
20 N. Dimov, S. Kugino and M. Yoshio, Electrochim. Acta, 2003, 48, 1579-1587.   DOI
21 D. Q. Shi, J. P. Tu, Y. F. Yuan, H. M. Wu, Y. Li and X. B. Zhao, Electrochem. Commun., 2006, 8, 1610-1614.   DOI
22 P. Zuo, G. Yin, X. Hao, Z. Yang, Y. Ma and Z. Gao, Mater. Chem. Phys., 2007, 104, 444-447.   DOI