• Title/Summary/Keyword: Volume Uncertainty

Search Result 166, Processing Time 0.025 seconds

A study of how Supply Chain companies correspond to water risk resulted from climate change (기후변화에 따른 기업 공급체인의 물 리스크 대응 실태 조사)

  • Park, Jiyoung;Park, Seogha;Lim, Byungsun;Kim, Chesoong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.149-168
    • /
    • 2015
  • It is expected that the temperature in Pyeongyang will be similar to that ($16.6^{\circ}C$) in Seogwipo in the late 21st century, and most of South Korea will enter the subtropical climate due to climate change. Change in the precipitation pattern like the range of fluctuation caused by climate change will lead to expanded uncertainty in securing reliable water supply, along with a serious impact on demands for living and industrial water due to change in the volume and period of river outflow. As industrial water for production activities is estimated based on the contract quantity, it is difficult to apply rationalization of water usage and incentives in water recycling. Therefore many companies are making efforts in complying with the effluent standard while spending few resources on such rationalization and recycling. This study researched water risk management over 115 Korean companies by 28 questions in 4 categories. Through the research, this study aims to understand water risk management levels and seek response plans.

Analysis of the Disposal Tunnel Spacing and Disposal Pit Pitch for the HLW Repository Design (심지층 처분시설 설계를 위한 처분터널 및 처분공 간격 분석)

  • 이종열;김성기;김진웅;최종원;한필수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.315-321
    • /
    • 2003
  • In this study, analysis of the disposal tunnel spacing and disposal pit pitch was carried out, as a factor of the design to estimate the scale and layout of the repository To do this, based on the reference repository concept and the engineered barrier concept, the cross section of the disposal tunnel and disposal pit are established and the mechanical and thermal stabilities of the tunnels are analyzed. Also, the optimized disposal tunnel spacing and the disposal pit pitch which minimize the excavation volume was proposed. The detailed analyses by the exact site characteristics data are needed to reduce the uncertainty of the site in the future.

  • PDF

Calculation of Turbulent Flows around a Submarine for the Prediction of Hydrodynamic Performance

  • Kim, Jin;Park, Il-Ryong;Van, Suak-Ho;Kim, Wu-Joan
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.16-31
    • /
    • 2003
  • The finite volume based multi-block RANS code, WAVIS developed at KRISO, is used to simulate the turbulent flows around a submarine with the realizable $\textsc{k}-\varepsilon$ turbulence model. RANS methods are verified and validated at the level of validation uncertainty 1.54% of the stagnation pressure coefficient for the solution of the turbulent flows around SUBOFF submarine model without appendages. Another SUBOFF configuration, axisymmetric body with four identical stem appendages, is also computed and validated with the experimental data of the nominal wake and hydrodynamic coefficients. The hydrodynamic forces and moments for SUBOFF model and a practical submarine are predicted at several drift and pitch angles. The computed results are in extremely good agreement with experimental data. Furthermore, it is noteworthy that all the computations at the present study were carried out in a PC and the CPU time required for 2.8 million grids was about 20 hours to get fully converged solution. The current study shows that CFD can be a very useful and cost effective tool for the prediction of the hydrodynamic performance of a submarine in the basic design stage.

Cohort-based evacuation time estimation using TSIS-CORSIM

  • Park, Sunghyun;Sohn, Seokwoo;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1979-1990
    • /
    • 2021
  • Evacuation Time Estimate (ETE) can provide decision-makers with a likelihood to implement evacuation of a population with radiation exposure risk by a nuclear power plant. Thus, the ETE is essential for developing an emergency response preparedness. However, studies on ETE have not been conducted adequately in Korea to date. In this study, different cohorts were selected based on assumptions. Existing local data were collected to construct a multi-model network by TSIS-CORSIM code. Furthermore, several links were aggregated to make simple calculations, and post-processing was conducted for dealing with the stochastic property of TSIS-CORSIM. The average speed of each cohort was calculated by the link aggregation and post-processing, and the evacuation time was estimated. As a result, the average cohort-based evacuation time was estimated as 2.4-6.8 h, and the average clearance time from ten simulations in 26 km was calculated as 27.3 h. Through this study, uncertainty factors to ETE results, such as classifying cohorts, degree of model complexity, traffic volume outside of the network, were identified. Various studies related to these factors will be needed to improve ETE's methodology and obtain the reliability of ETE results.

An adaptive approach for the chloride diffusivity of cement-based materials

  • Tran, Bao-Viet;Pham, Duc-Chinh;Loc, Mai-Dinh;Le, Minh-Cuong
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Adaptive schemes are constructed in this paper for modeling the effective chloride diffusion coefficient of cement-based materials (paste and concrete). Based on the polarization approximations for the effective conductivity of isotropic multicomponent materials, we develop some fitting procedures to include more information about the materials, to improve the accuracy of the scheme. The variable reference parameter of the approximation involves a few free scalars, which are determined through the available numerical or experimental values of the macroscopic chloride diffusion coefficient of cement paste or concrete at some volume proportions of the component materials. The various factors that affect the chloride diffusivity of cement-based material (porous material structure, uncertainty of value of the chloride diffusion coefficient in water-saturated pore spaces, etc.) may be accounted to make the predictions more accurate. Illustrations of applications are provided in a number of examples to show the usefulness of the approach.

EXPANDING THE GLOBAL CONSTRUCTION OPPORTUNITIES THROUGH BUSINESS CONVERGENCE

  • Soo-Sam Kim;Seung Heon Han
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.40-40
    • /
    • 2009
  • Construction firms have long sought success in the global construction market through diversifying revenue sources and project portfolios. The volume of international contracts has contributed to firms' sustained growth by mitigating the impact of the domestic market's cyclical nature. In spite of the importance of international construction, the uncertainty and dynamic changes surrounding global construction pose serious threats to global contactors. Over the last decade, the international construction industry has changed drastically in many ways, particularly including financial resource diversity, competition rules for the selection of contractors, and the terms of delivery systems requiring more competent total service providers. This paper investigates the important changes for global contractors through various documentation analysis as well as in-depth interviews with industry experts. This paper then analyzes the common strategies and lessons obtained from the cases of leading global contractors that have sustained their growth in the competitive global construction during the last decade. In addition, the authors further analyzed the comparisons between those firms and Korean contractors to discern any difference in sustaining their growth in the competitive market. It was found that those leading firms were quite proactive and responsive to changing markets by diversifying their market revenues to stabilize their revenue structure and enhancing their competency through a wide range of 'business convergence'. In addition, they significantly increased their upstream/downstream functional capabilities; hence becoming more competent service providers, able to grow in these rapidly changing market conditions. Finally, this paper benchmarks the critical strategies that support growth, which in turn can provide a strategic guideline for expansion into the global construction market.

  • PDF

A Study on the Spillover Effect of Information between Factors Related to Steel Materials and BCI (제철원료 관련 요인과 BCI 간의 정보전이 효과에 관한 연구)

  • Yo-Pyung Hwang;Ye-Eun Oh;Keun-Sik Park
    • Korea Trade Review
    • /
    • v.47 no.2
    • /
    • pp.133-154
    • /
    • 2022
  • The Baltic Capesize Index (BCI), which is used as an indicator for marine transportation of steel raw materials, is one of the key economic indexes for managing the risk of loss due to rapid market fluctuations when steel companies establish business strategies and procuring plans for raw materials. Still, the conditions of supply and demand of steel raw materials has been extremely affected by volatility shocks from drastic events like the financial crisis such as the Lehman Brothers incident and changes in the external environment such as COVID-19. And, especially since the 2008 financial crisis, endeavors to predict the market conditions of the steel raw material is becoming more and more arduous for the deepening uncertainty and increased volatility of BCI, which has been used as a leading indicator of the real economy. This study investigates the correlation between the steel raw material market and the marine transportation market by estimating the spillover effect of information between markets. The vector error correction model (VECM) was used to analyze information transfer based on the correlation between the BCI and crude steel production, capesize fleet supply, raw material price, and cargo volume.

A Comparative Study on the REV, non-REV and Joint Network Methods for Analysis of Groundwater Flow in Jointed Rock Masses (절리암반내 지하수 유동해석을 위한 대표체적법, 비대표체적법 및 절리망 해석법의 비교 연구)

  • 문현구
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.217-228
    • /
    • 1999
  • The three methods of analysis (i) REV(representative elemental volume), (ii) non-REV and (iii) joint network analysis are introduced in this paper to analyze the groundwater flow in jointed rock mass and the inflow into underground excavations. The results from those methods are compared one another to reveal their characteristics by varying the number of joints and the diameter of the opening. The pre-processor, the so-called sequential analysis, is introduced to predict the equivalent hydraulic conductivity of a jointed rock mass having a number of intersecting joints. Using the finite element mesh, joint map and sequential analysis, the equivalent hydraulic conductivities are calculated for all 445 elements. The hydraulic inhomogeneity and the determination of the representative properties of jointed rock masses are discussed. In the REV analysis where the entire rock mass is homogenized through the representative properties, the inflow is increased regularly and consistently by increasing the joint density, the opening size and the conductivity contrast value. Though the non-REV analysis showed irregular variation of the inflow due to the local inhomogeneity allowed to individual elements, the inflow approached the REV results as the characteristic length increases. The joint network analysis showed the most sensitive reaction to the joint density, the opening size and the presence of the network crossing the opening. The reliability of the network analysis depends on the geometric data of individual joints. In view of the limited field data on joint geometry and possible uncertainty the REV and non-REV methods are considered more practical and rational than the joint network analysis.

  • PDF

Risk Assessment in OECD High Production Volume Chemicals Program and its Countermeasure (OECD 대량생산화학물질 위해성평가 및 대책)

  • Kim, Myungjin;Bae, Heekyung;Choi, Yeonki;Kim, Mi Kyoung;Koo, Hyun-Ju;Song, Sang-Hwan;Choi, Kwang-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.347-353
    • /
    • 2005
  • The risk assessment is the qualitative or quantitative evaluation of the risk posed to human health and the environment by the actual or potential presence or release of hazardous substances, pollutants or contaminants. The environmental impact assessment (EIA) is assessed by the environmental criteria, and risk assessment is assessed by the risk rate. Risk rate based on dose-response values may not be easy to apply on regulatory basis like EIA for uncertainty. Internationally there is an example of OECD program. Risk assessment of High Production Volume (HPV) Chemicals has started since the OECD Program with the 1990 Council Act on the Co-operative Investigation and Risk Reduction of Existing Chemicals. These HPV chemicals include all chemicals produced or imported at levels greater than 1,000 tonnes per year in at least one Member country or in the European Union region. The SIDS called the Screening Information Data Set is regarded as the minimum information needed to assess an HPV chemical to determine whether any further work should be carried out or not. All the data elements of SIDS including assessment for environment and health are prepared as three formats of the full SIDS Dossier, the SIDS Initial Assessment Report (SIAR), and the SIDS Initial Assessment Profile (SIAP) of an HPV chemical. In 1998 the global chemical industry through the International Council of Chemical Associations (ICCA) has joined to work with OECD. The OECD has assessed approximately 1,000 chemicals from 1991 through 2004 with ICCA. Till the February of 2005, 592 chemicals of those chemicals completed SIDS reports. Member countries have been targeted the goal of 1,000 new chemicals from 2005 to 2010 and Korea shared 36 chemicals from the 1,000 new chemicals. Currently Korea has completed SIDS reports of 7 chemicals among sponsored 24 chemicals. In conclusion SIDS project will be linked to national program for outputs application with more reliable production. Both the OECD and industry will carry out their commitment to complete assessments for more and the remaining chemicals assessment. The major outputs will contribute to cope with international chemical management.

Calibration of Discharge Coefficient of Sonic Nozzle Using CVFM (정적형 유량계를 이용한 소닉노즐 유출계수 교정 방법에 관한 연구)

  • Shin, J.H.;Kang, S.B.;Park, K.A.;Lim, J.Y.;Cheung, W.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.243-248
    • /
    • 2010
  • Sonic nozzles have been a standard device for measurement of steady state gas flow, as recommended in ISO 9300. This paper introduces two sonic nozzles of diameter ${\Phi}$ 0.03 mm and ${\Phi}$ 0.2 mm precisely machined according to ISO 9300. The constant volume flow meter(CVFM), readily set up in the Vacuum center of KRISS. was used to calibrate the discharge coefficients of both nozzles. The calibration results were shown to determine them within the 3% expanded measurement uncertainty. Calibrated sonic nozzles were found to be applicable for precision measurement of steady state gas flow in the vacuum process in the ranges of 0.6~1,800 cc/min. Those flow conditions are equivalent to the fine gas flow with Reynolds numbers of 26~12,100. Those encouraging results confirm that calibrated sonic nozzles enable precision measurement of extremely low gas flow encountered very often in th vacuum processes. Both calibrated sonic nozzles are proven to provide the precision measurement of the volume flow rate of the dry vacuum pump within one percent difference in reference to CVFM. Calibrated sonic nozzles are applied to a new 'in-situ and in-field' equipment designed to measure the volume flow rate of vacuum pumps in the semiconductor and flat display processes. Furthermore, they can provide other applications to flow control devices in vacuum, such as MFC, etc.