• Title/Summary/Keyword: Volume Scattering

Search Result 229, Processing Time 0.025 seconds

Variability of Vertical Distribution of Volume Scattering Observed in the Shallow Water (천해 체적 산란강도의 수직분포 변동성)

  • 박경주;김은혜;강돈혁;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • Measurements of backscattered intensity were made over a shallow water using 300 ㎑and 1200 ㎑ bottom mounted ADCP (Acoustic Doppler Current Profiler) to determine the temporal variability of vertical distribution of high-frequency volume scattering strength (Sv). The variability of Sv in relatively deep water column(85 m and 113 m was due to the daily vertical migration, probably of larger zooplankton. However it was not found with 1200㎑ data at shallow water column. From the empirical orthogonal function (EOF) analysis using 1200㎑ data, the vertical distribution of the first mode eigenvectors of Sv is characterized by the presence of the maximum values near the bottom of the water.

Full Polarimetric SAR Decomposition Analysis of Landslide-affected Areas in Mocoa, Colombia

  • Jeon, Hyeong-Joo;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.365-374
    • /
    • 2017
  • SAR (Synthetic Aperture Radar) is an effective tool for monitoring areas damaged by disasters. Full PolSAR (Polarimetric SAR) enhances SAR's capabilities by providing specific scattering mechanisms. Thus, full PolSAR data have been widely used to analyze the situation when disasters occur. To interpret full PolSAR data, model-based decomposition methods are frequently used due to its easy physical interpretation of PolSAR data and computational efficiency. However, these methods present problems. One of the key problems is the overestimation of the volume scattering component. To minimize the volume scattering component, the OA (Orientation Angle) compensation method is widely utilized. This paper shows that the effect of the OA compensation was analyzed over landslide affected areas. In this paper, the OA compensation is applied by using the OA estimated from the maximum relative Hellinger distance. We conducted an experiment using two full polarimetric ALOS/PALSAR (Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar)-2 data collected over Mocoa, Colombia which was seriously damaged by the 2017 Mocoa landslide. After OA compensation, the experimental results showed volume scattering power decreased, while the double-bounce and surface scattering power increased. Particularly, significant changes were noted in urban areas. In addition, after OA compensation, the separability of the double-bounce and surface scattering components are improved over the damaged building areas. Furthermore, changes in the OA can discriminate visually between the damaged building areas and undamaged areas. In conclusion, we demonstrated that the effect of OA compensation improved the influence of the double-bounce and surface scattering components, and OA changes can be useful for detecting damaged building areas.

Thermal radiation model for rocket plume base heating using the finite-volume method (유한체적법에 의한 로켓플룸 저부가열의 열복사 모델)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3598-3606
    • /
    • 1996
  • The finite volume method for radiation is applied to investigate a radiative heating of rocket base plane due to searchlight and plume emissions. Exhaust plume is assumed to absorb, emit and scatter the radiant energy isotropically as well as anisotropically, while the medium between plume boundary and base plane is cold and nonparticipating. Scattering phase function is modelled by a finite series of Legendre polynomials. After validating benchmark solution by comparison with that of previous works obtained by the Monte-Carlo method, further investigations have been done by changing such various parameters as plume cone angle, scattering albedo, scattering phase function, optical radius and nozzle exit temperature. The results show that the base plane is predominantly heated by the plume emission rather than the searchlight emission when the nozzle exit temperature is the same as that of plume.

The Measurement of the Temperature Variation in a Constant Volume Combustion Chamber by the Laser Rayleigh Scattering (레이저 레일레이 산란법에 의한 定積燃燒室內의 溫度變動에 대한 計測)

  • ;;苦井和憲;志水昭史
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.328-340
    • /
    • 1991
  • The combustion process in the combustion chamber has been investigated by taking pressure, temperature, chemical equilibrium and the shape of flame. To predict temperature of a flame in a combustion chamber is one of very important problems in the field of combustion and the temperature is a important factor of ignition and counteraction to inflammation. In this paper, the flame temperature was determined by the method of the Rayleigh scattering of Ar-Ion Laser (514.5nm). The Rayleigh scattering has been got considerably attention because of its strong cattering intensity. As a result, it is shown that I can measure the shape of flame by schlieren photography and that I can get the flame temperature variation in constant volume combustion chamber by Laser Rayleigh Scattering.

Measurement of vertical migration speed of Sound Scattering Layer using an bottom mooring type Acoustic Doppler Current Profiler (해저설치형 음향도플러유향유속계를 이용한 음향산란층의 연직이동속도 측정)

  • Jo, Hyeon-Jeong;Lee, Kyoung-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.449-457
    • /
    • 2010
  • This study shows that the vertical migration speed of sound scattering layers (SSLs), which is distributed in near Funka Bay, were measured by 3D velocity components acquired from a bottom moorng ADCP. While the bottom mooring type has a problem to measure the velocity vectors of sound scattering layer distributed near to surface, both the continuous vertical migration patterns and variability of backscatterers were routinely investigated as well. In addition, the velocity vectors were compared with the vertical migration velocity estimated from echograms of Mean Volume Backscattering Strength, and estimated to produce observational bias due to SSLs which is composed of backscatterers such as euphausiids, nekton, and fishes have swimming ability.

A Study on Quantitative Measurements of Equivalence Ratio in Constant Volume Chamber Using UV Laser Raman Scattering (UV Laser Raman Scattering을 이용한 정적 연소기내 분사된 연료의 정량적 당량비 측정에 관한 연구)

  • Jin, S.H.;Heo, H.S.;Kim, G.S.;Park, K.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.35-42
    • /
    • 1998
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air and propane/air mixture in constant volume combustion chamber. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity Raman signal. Raman shifts and Ram cross-sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ were measured precisely. Our results showed an excellent agreement with other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air showed that $O_2\;:\;N_2$ = 0.206 : 0.794. We used constant volume combustion chamber and gas injector which is operated at $5\sim10barg$. Methane and propane are used as a fuel. 50 Raman signal are obtained and ensemble averaged for measurement of equivalence ratio. Our measured results showed that the equivalence ratio of fuel/air mixture is reasonable at ${\pm}5%$ error range.

  • PDF

Acoustic Scattering Layers in the East China Sea ( 2 ) -Vertical Distribution of Volume Scattering Strength- (동지나해의 초음파 산란층에 관한 연구 ( 2 ) -체적산란강도의 연직분포-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.20-25
    • /
    • 1990
  • During the summer of 1989, the authors carried out the hydroacoustic surverys to investigate the vertical distribution of volume backscattering strength in the East China Sea and simultaneously the biological sampling of the scattering layers by bottom trawling. The echoes from the scattering layers was continuously measured by using a 50 kHz echo sounder during the day and night. A data acquisition system was used to record digitally the envelope of the echoes and the echo integration technique was used to determine the scattering strength proportional to biomass density in each layer. The vertical profiles of volume backscattering strength also were compared with the one of water temperature. The results obtained can be summarized as follows: 1. The vertical profiles of mean volume backscattering strength at day and night suggested that during the night the biggest fish concentrations appeared in the mixed layer above the thermocline and during the day near the bottom. In another profiles where the thermocline was not well developed, peaks in scattering appeared at midwater depths and near the bottom. 2. The maximum values of mean volume backscattering strengths varied from -49.3 dB to -48.0 dB on different regions and at different times of the day and night. 3. Trawl data indicated that the organisms consisting of the scattering layer near the bottom were squid and various species of demersal fishes.

  • PDF

An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (II) - Effects of Diffusion - (광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(II) - 확산의 영향 -)

  • Cho, Jaegeol;Lee, Jeonghoon;Kim, Hyun Woo;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1151-1162
    • /
    • 1999
  • The effects of radial heat and $H_2O$ diffusion on the evolution of silica particles in coflow diffusion flames have been studied experimentally. The evolution of silica aggregate particles in coflow diffusion flames has been measured experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Flame temperatures and volumetric differential scattering cross sections have been measured for different flame conditions such as inert gas species, $H_2$ flow rates, and burner injection configurations to examine the relation between the formation of particles and radial $H_2O$ diffusion. The comparisons of oxidation and flame hydrolysis have also been made for various $H_2$ flow rates using $N_2$ or $O_2$ as a carrier gas. Results indicate that the role of oxidation becomes dominant as both carrier gas($O_2$) and $H_2$ flow rates increases since the radial heat diffusion precedes $H_2O$ diffusion in coflow flames used in this study. The effect of carrier gas flow rates on the evolution of silica particles have also been studied. When using $N_2$ as a carrier gas, the particle volume fraction has a maximum at a certain carrier gas flow rate and as the flow rate is further increased, the hydrolysis reaction Is delayed and the spherical particles finally evolves into fractal aggregates due to decreased flame temperature and residence time.

Elastic Wave Field Calculations (탄성파의 변형 및 응력 계산에 관한 연구)

  • 이정기
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Calculation of elastic wave fields has important applications in a variety of engineering fields including NDE (Non-destructive evaluation). Scattering problems have been investigated by numerous authors with different solution schemes. For simple geometries of the scatterers (e.g., cylinders or spheres), the analysis of steady-state elastic wave scattering has been carried out using analytical techniques. For arbitrary geometries and multiple inclusions, numerical methods have been developed. Special finite element methods, e.g., the infinite element method and a hybrid method called the Global-Local finite element method have also been developed for this purpose. Recently, the boundary integral equation method has been used successfully to solve scattering problems. In this paper, a volume integral equation method (VIEM) is proposed as a new numerical solution scheme for the solution of general elasto-dynamic problems in unbounded solids containing multiple inclusions and voids or cracks. A boundary integral equation method (BIEM) is also presented for elastic wave scattering problems. The relative advantage of the volume and boundary integral equation methods for solving scattering problems is discussed.

  • PDF

A NUMERICAL SIMULATION OF INFRARED RADIATION OF EXHAUST PLUME (배기 후류의 적외선 방사 특성 모사를 위한 수치적 연구)

  • Zhang, Y.;Yang, Y.R.;Park, G.R.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.422-425
    • /
    • 2010
  • The infrared radiation of exhaust plume was investigated numerically by a finite volume method (FVM) with anisotropic scattering particles. The exhaust plume is considered to absorb, emit and scatter radiant energy isotropically as well as anisotropically. The spatial and spectral distribution characteristics were obtained for the detection wavelength with $2.7{\mu}m$. The radiative intensities were presented for the different detective direction.

  • PDF