• Title/Summary/Keyword: Volume Flow-rate

Search Result 1,180, Processing Time 0.027 seconds

A Study on the Development of Measurement System for Fluid Volume and Flow Rate (유체의 유량 및 유속 측정 시스템 개발에 관한 연구)

  • Lee, Seok-Won;Lee, Tea-Jin;Nam, Yun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2492-2494
    • /
    • 2003
  • Urine analysis is one of the most important medical examination in the hospital. Not only the data for the ingredients of urine through chemical analysis, but also the data related to fluid dynamics, e.g., peak flow rate, average flow rate, may provide some useful information about patient's state of health. Therefore, we develop the portable system to measure and analyse fluid volume/flow rate in this study. This system can store and print the measured data during the pre-specified time interval, and provide some meaningful data related with fluid dynamics. We explain the method and the technical stuff to implement the system, and show the result.

  • PDF

The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect (체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구)

  • Jeong Ui-Heon;Gwon Se-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.204-210
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength determined by the density difference between the burned and the unburned region. Volume expansion adjusts the flow field to accommodate the increased volume flow rate crossing the flame front. Test result predicted the measured velocity field qualitatively. The method was applied to study the interaction of vortex and premixed flame. Increased volume expansion did not change the initial growth rate of flame area. However, the residence time and flame surface area increased with higher expansion ratios.

  • PDF

A Study on the Vertical upward Bubble Flow using Image Processing Technique (영상기법을 이용한 수직상향 기포유동에 관한 연구)

  • 서동표;오율권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.617-623
    • /
    • 2003
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. The velocity of upward bubble flow was calculated for two different experimental conditions:1) bubble flow without kinetic energy 2) bubble flow with kinetic energy. Bubble flow without kinetic energy starts to undergo the effect of buoyancy l0cm away from the nozzle. Whereas. kinetic energy is dominant before 30 cm away from the nozzle in bubble flow but after this point kinetic energy and inertial force are applied on bubble flow at the same time In addition, as the flow rate increases the maximum velocity point moves to the nozzle. The velocity Profiles near free surface is extremely irregular due to surface flow. Gas volume fraction is high near the nozzle due to gas concentration. but decreases with the increasement of axial position. Gas volume fraction does not vary after the axial position, z=60 in spite of the increasement of flow.

Thermo-fluid Dynamic Analysis through a Numerical Simulation of Canister (수치 모사를 통한 사출관 내부의 열유동 해석)

  • Kim, Hyun muk;Bae, Seong hun;Park, Cheol hyeon;Jeon, Hyeok soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.72-83
    • /
    • 2017
  • A thermo-fluid dynamic analysis was performed through the numerical simulation of a missile canister. Calculation was made in a fixed analytical volume and fully evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF(Volume Of Fluid) model were chosen and parametric study was performed with the change of coolant flow rate. It could be found that the pressure on the canister top nonlinearly increased with the increase of coolant flow rate. Temperature and coolant distribution were closely related to the flow behavior in canister. Temperature on the canister bottom indicated a decrease being proportional to coolant flow rate in early times but after a specific time, the temperature increased with the tendency being reversed. In addition, the early part of temperature showed a fluctuating phenomenon because of the overall circulatory flow of mixture gas.

Characteristics of Wind Flow Variation with Wing Development of Space-Reduced Damper (공간축소형 댐퍼의 날개개도에 따른 풍량변화 특성평가)

  • Baek, Geun-Uk;Baek, Nam-Do;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.113-120
    • /
    • 2021
  • An experimental device was designed to control the opening of a damper via operating the folding blade drive of the device and to control the amount of air flowing through the damper. In addition, an inverter was installed in the blower to control its fan rotation speed and hence the amount of air flowing through the damper. An experimental study was conducted on the opening of the folding blade damper and changes in the rotational speed of the blower. From the results, the theoretical air volume of the folding blade damper and experimental air volume were observed to be in good agreement within an error range of ±3%. As the mass flow rate of the air passing through the folding blade damper increases proportionally with the changes in damper opening and fan rotation speed, the performance of the damper can be controlled proportionally. The mass flow rate was also observed to increase linearly; therefore, the mass flow rate of the air passing through the folding blade damper increases proportionally with changes in the rotation speed of the blower, such that the performance of the damper is proportional to a constant air volume even with varying rotation speeds of the blower.

Cardiac Response to Head-Out Water Immersion in Man

  • Choi, Jang-Kyu;Park, Won-Kun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.253-261
    • /
    • 2000
  • Head-out water immersion induces marked increase in the cardiac stroke volume. The present study was undertaken to characterize the stroke volume change by analyzing the aortic blood flow and left ventricular systolic time intervals. Ten men rested on a siting position in the air and in the water at $34.5^{circ}C$ for 30 min each. Their stroke volume, heart rate, ventricular systolic time intervals, and aortic blood flow indices were assessed by impedance cardiography. During immersion, the stroke volume increased 56%, with a slight (4%) decrease in heart rate, thus cardiac output increased ${\sim}50%.$ The slight increase in R-R interval was due to an equivalent increase in the systolic and diastolic time intervals. The ventricular ejection time was 20% increased, and this was mainly due to a decrease in pre-ejection period (28%). The mean arterial pressure increased 5 mmHg, indicating that the cardiac afterload was slightly elevated by immersion. The left ventricular end-diastolic volume index increased 24%, indicating that the cardiac preload was markedly elevated during immersion. The mean velocity and the indices of peak velocity and peak acceleration of aortic blood flow were all increased by ${\sim}30%,$ indicating that the left ventricular contractile force was enhanced by immersion. These results suggest that the increase in stroke volume during immersion is characterized by an increase in ventricular ejection time and aortic blood flow velocity, which may be primarily attributed to the increased cardiac preload and the muscle length-dependent increase in myocardial contractile force.

  • PDF

A Study on the Characteristics of the Liquid-gas Ejector (Liguid-gas Ejector의 구동성능 특성에 관한 연구)

  • Park, Gi-Tae;Jin, Zhen-Hua;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1047-1052
    • /
    • 2008
  • The aim of this paper is that studies on the characteristics of the liquid-gas ejector. Could get data about various model using numerical analysis. Compare and analyze result that get by an experiment and numerical analysis. And studied Characteristics of the ejector. In this paper, Numerical analysis model is gotten divided according to each Throat ratio as three types. Each throat ratio is 0, 4 and 7.5. According to the result that analyze basic model, pressure became lower causing the volume flow rate increase. In CFD studies, Fixed volume flow rate by these result and analyzed ejector performance. As a result, there was no change of pressure to Throat's Enterance, and pressure became low while pass the throat. Since, pressure recovered while passing diffuser. The outer flow velocity did not change greatly to change of volume flow rate. This research expects that is utilized to data for performance elevation hereafter.

  • PDF

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A. SMALL;P. NAGARANI;M. NARAHARI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.51-70
    • /
    • 2023
  • The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.

Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number (횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

Calculation of Smoke Temperature/Volume Folw rate in Tunnel Fires (철도터널에서의 화재시 발생되는 연기 온도/발생량 계산)

  • Park, Won-Hee;Jang, Yong-Jun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1218-1222
    • /
    • 2007
  • Under various tunnel fires, smoke average temperature and volume flow rate in a tunnel fire are calculated. To obtain realistic results, enthalpy of smoke which composites combustion gases and entrainment air is calculated from curvefit polynomials by temperature.

  • PDF