• 제목/요약/키워드: Voltage-to-Voltage Converter

검색결과 3,344건 처리시간 0.027초

고승압비를 갖는 전압 클램프 탭인덕터 부스트 컨버터 (Voltage Clamped Tapped-Inductor Boost Converter with High Voltage Conversion Ratio)

  • 강정민;이상현;홍성수;한상규
    • 전력전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.34-40
    • /
    • 2012
  • In this paper, voltage clamped tapped-inductor boost converter with high voltage conversion ratio is proposed. The conventional tapped-inductor boost converter has a serious drawback such as high voltage stresses across all power semiconductors due to the high resonant voltage caused by the leakage inductor of tapped inductor. Therefore, the dissipative snubber is essential for absorbing this resonant voltage, which could degrade the overall power conversion efficiency. To overcome these drawbacks, the proposed converter employs a voltage clamping capacitor instead of the dissipative snubber. Therefore, the voltage stresses of all power semiconductors are not only clamped as the output voltage but the power conversion efficiency can also be considerably improved. Moreover, since the energy stored in the clamp capacitor is transferred to the output side together with the input energy, the proposed converter can achieve the higher voltage conversion ratio than the conventional tapped-inductor boost converter. Therefore, the proposed converter is expected to be well suited to various applications demanding the high efficiency and high voltage conversion ratio. To confirm the validity of the proposed circuit, the theoretical analysis and experimental results of the proposed converter are presented.

Analysis of Hybrid Converter with Wide Voltage Range Operation

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1099-1107
    • /
    • 2019
  • A soft switching converter with wide voltage range operation is investigated in this paper. A series resonant converter is implemented to achieve a high circuit efficiency with soft switching characteristics on power switches and rectifier diodes. To improve the weakness of the narrow voltage range in LLC converters, an alternating current (ac) power switch is used on the primary side to select a half-bridge or full-bridge resonant circuit to implement 4:1 voltage range operation. On the secondary-side, another ac power switch is adopted to select a full-wave rectifier or voltage-doubler rectifier to achiever an additional 2:1 output voltage range. Therefore, the proposed resonant converter has the capacity for 8:1 (320V~40V) wide output voltage operation. A single-stage hybrid resonant converter is employed in the study circuit instead of a two-stage dc converter to achiever wide voltage range operation. As a result, the study converter has better converter efficiency. The theoretical analysis and circuit characteristics are verified by experiments with a prototype circuit.

다이오드-커패시터 출력필터를 갖는 Quasi Z-소스 컨버터의 입력 전류와 출력전압 특성 (Characteristics of Output Voltage and Input Current of Quasi Z-Source Converter with a Diode-Capacitor Output Filter)

  • 임영철;김세진;정영국
    • 조명전기설비학회논문지
    • /
    • 제26권6호
    • /
    • pp.16-28
    • /
    • 2012
  • This paper proposes a quasi Z-source converter(QZSC) with a diode-capacitor output filter to improve the output DC voltage boost ability. The proposed converter has the same quasi Z-source network topology compared with the conventional converter. But the proposed method is adopted a diode-capacitor filter as its output filter, since the conventional method is used an inductor-capacitor as its output filter. Under the condition of the same input-output DC voltage, the proposed method has more lower shoot-through duty ratio than the conventional method. Also, because the proposed converter has same voltage boost factor under lower shoot-through duty ratio compared with the conventional converter, the proposed converter can be operated with the lower capacitor voltage of Z-source network and the lower input current. To confirm the validity of the proposed method, PSIM simulation and a DSP based experiment were performed to acquire the output DC voltage 120[V] under the input DC voltage 80[V]. And the capacitor voltage and inductor current in Z-source network, the output voltage of each converter were compared and discussed.

전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어 (Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality)

  • 이희준;신수철;강진욱;원충연
    • 전력전자학회논문지
    • /
    • 제21권6호
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

Single-Phase Z-Source AC/AC Converter with Wide Range Output Voltage Operation

  • Nguyen, Minh-Khai;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.736-747
    • /
    • 2009
  • A new type of single-phase Z-source AC/AC converter based on a single-phase matrix converter is proposed in this paper. The proposed single-phase Z-source AC/AC converter has unique features; namely that the output voltage can be bucked and in-phase/out-of-phase with the input voltage; that the output voltage can be boosted and in-phase/out-of-phase with the input voltage. The converter employs a safe-commutation strategy to conduct along a continuous current path, which results in the elimination of voltage spikes on switches without the need for a snubber circuit. The operating principles of the proposed single-phase Z-source AC/AC converter are described, and a circuit analysis is provided. To verify the performance of the proposed converter, a laboratory prototype based on a TMS320F2812 DSP was constructed. The simulation and the experimental results verified that the output voltage can be bucked-boosted and in-phase with the input voltage, and that the output voltage can be bucked-boosted and out-of-phase with the input voltage.

단일 스위치와 전압 체배 회로를 이용하는 고변압비와 낮은 전압 스트레스를 가진 새로운 비절연형 DC-DC 컨버터 토폴로지 (Novel Non-Isolated DC-DC Converter Topology with High Step-Up Voltage Gain and Low Voltage Stress Characteristics Using Single Switch and Voltage Multipliers)

  • Tran, Manh Tuan;Amin, Saghir;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.83-85
    • /
    • 2019
  • The use of high voltage gain converters is essential for the distributed power generation systems with renewable energy sources such as the fuel cells and solar cells due to their low voltage characteristics. In this paper, a high voltage gain topology combining cascode Inverting Buck-Boost converter and voltage multiplier structure is introduced. In proposed converter, the input voltage is connected in series at the output, the portion of input power is directly delivered to the load which results in continuous input current. In addition, the voltage multiplier stage stacked in proper manner is not only enhance high step-up voltage gain ratio but also significantly reduce the voltage stress across all semiconductor devices and capacitors. As a result, the high current-low voltage switches can be employed for higher efficiency and lower cost. In order to show the feasibility of the proposed topology, the operation principle is presented and the steady-state characteristic is analyzed in detail. A 380W-40/380V prototype converter was built to validate the effectiveness of proposed converter.

  • PDF

고전압비와 낮은 전압 스트레스를 가진 단일 스위치와 전압 체배 회로를 이용한 새로운 비절연형 DC-DC 컨버터 (A Novel Non-Isolated DC-DC Converter using Single Switch and Voltage Multipliers with High Step-Up Voltage Gain and Low Voltage Stress Characteristics)

  • 트란 만 투안;사기르 아민;최우진
    • 전력전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.157-161
    • /
    • 2020
  • High voltage gain converters are essential for distributed power generation systems with renewable energy sources, such as fuel cells and solar cells, because of their low voltage characteristics. This paper introduces a novel nonisolated DC-DC converter topology developed by combining an inverting buck-boost converter and voltage multipliers. In the proposed converter, the input voltage is connected in series with the output, and the majority of the input power is directly delivered to the load. The voltage multipliers are stacked in series to achieve high step-up voltage gain. The voltage stress across all of the switches and capacitors can be significantly reduced. As a result, the switches with low voltage ratings can be used to achieve high efficiency and low cost. To verify the validity of the proposed topology, a 360-W prototype converter is built to obtain the experimental results.

Performance Improvement of Isolated High Voltage Full Bridge Converter Using Voltage Doubler

  • Lee, Hee-Jun;Shin, Soo-Cheol;Hong, Seok-Jin;Hyun, Seung-Wook;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2224-2236
    • /
    • 2014
  • The performance of an isolated high voltage full bridge converter is improved using a voltage doubler. In a conventional high voltage full bridge converter, the diode of the transformer secondary voltage undergoes a voltage spike due to the leakage inductance of the transformer and the resonance occurring with the parasitic capacitance of the diode. In addition, in the phase shift control, conduction loss largely increases from the freewheeling mode because of the circulating current. The efficiency of the converter is thus reduced. However, in the proposed converter, the high voltage dual converter consists of a voltage doubler because the circulating current of the converter is reduced to increase efficiency. On the other hand, in the proposed converter, an input current is distributed when using parallel input / serial output and the output voltage can be doubled. However, the voltages in the 2 serial DC links might be unbalanced due to line impedance, passive and active components impedance, and sensor error. Considering these problems, DC injection is performed due to the complementary operations of half bridge inverters as well as the disadvantage of the unbalance in the DC link. Therefore, the serial output of the converter needs to control the balance of the algorithm. In this paper, the performance of the conventional converter is improved and a balance control algorithm is proposed for the proposed converter. Also, the system of the 1.5[kW] PCS is verified through an experiment examining the operation and stability.

A Study of On-Chip Voltage Down Converter for Semiconductor Devices

  • Seo, Hae-Jun;Kim, Young-Woon;Cho, Tae-Won
    • 전기전자학회논문지
    • /
    • 제12권1호
    • /
    • pp.34-42
    • /
    • 2008
  • This paper proposes a new on-chip voltage down converter(VDC), which employs a new reference voltage generator(RVG). The converter adopts a temperature-independence reference voltage generator, and a voltage-up converter. The architecture of the proposed VDC has a high-precision, and it was verified based on a 0.25${\mu}m$ 1P5M standard CMOS technology. For 2.5V to 1.0V conversion, the RVG circuit has a good characteristics such as temperature dependency of only 0.2mV/$^{\circ}C$, and the voltage-up circuit has a good voltage deviation within ${\pm}$0.12% for ${\pm}$5% variation of supply voltage VDD. The output voltage is stabilized with ${\pm}$1mV for load current varying from 0 to 100mA.

  • PDF

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.