• Title/Summary/Keyword: Voltage-source converter

Search Result 637, Processing Time 0.029 seconds

Characteristics of Voltage Sag/Swell Compensator Utilizing Single-Phase Matrix Converter

  • Yamamoto, Kichiro;Ikeda, Keisuke;Tsurusaki, Yu;Ikeda, Minoru
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.447-453
    • /
    • 2013
  • Compensating characteristics of a voltage sag/swell compensator utilizing single-phase matrix converter is examined. First, system configuration and operation for both voltage sag and swell are described. Next, in order to suppress pulsations of the source voltage, a countermeasure using low pass filter and all pass filter is introduced. Then, compensating characteristics of the compensator are investigated for R-L load by simulation. Finally, the validity of the simulated results is confirmed by the experimental results.

The Compensation Method of the Modulation-delay for the Voltage type Dual PWM Converter and Composition of the Instantaneous Current Controller (전압형 Dual PWM 컨버터의 변조각 지연에 따른 보상법 및 순시전류 제어기 구성)

  • Chung, Yon-Tack;Kim, Won-Chul;Lee, Sa-Young;Chun, Ji-Yong;Kim, Hyeun-Bong;Lee, Keun-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.369-372
    • /
    • 1994
  • In this paper, a voltage type dual PWM converter which achives the bidirectional power flow between a AC supply and a DC bus voltage is described. In PWM modulator, there exist a time difference between the sampling time and carrier wave, it achieves stable modulation even the disturbance in the synchronous AC source voltage. And this paper proposes the compensation method and the control method related a disturbance of synchronous signal using the low pass filter and phase shifter for the stable modulation. As a result the voltage type dual PWM converter makes the imput current wave as sinusoid, and performs the high power factor driving.

  • PDF

A Study on the novel voltage converter for PWM control method (PWM 제어방식에 의한 새로운 전압형 컨버어터에 관한 연구)

  • Chung, Y.T.;Seo, Y.S.;Han, K.H.;Lee, S.Y.;Kim, H.W.;Lee, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.999-1001
    • /
    • 1992
  • This paper describes the voltage type PWM converter. Input AC current is to be sinusoidal and AC input voltage is determined by controlling the phase of the source and converter properly. By corresponding the phase of input voltage to that of base current, DC constant voltage Is to be output with high power factor driving. Also it is possible to be leading or lagging power factor driving. Optimum driving is performed by controlling the current instantaneously in the steady state or transient state.

  • PDF

A Characteristic Analysis of Resonant Voltage Resultant Type DC/DC Converter (공진 전압 합성형 DC/DC 컨버터의 특성해석)

  • Hwang, Gye-Ho;Kim, Jong-Hae;Nam, Seung-Sik;Kim, Dong-Hui;Jeong, Do-Yeong;O, Seung-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • This paper presents a circuit of resonant voltage resultant type DC/DC converter consists of two unit half-bridge high frequency resonant inverters, and describes operating modes, principle and analysis of the proposed circuit. Also, the analysis of the proposed circuit has generally described by using normalized parameters. Based on the characteristic values, a method of the circuit design is proposed. According to phase shift, the output voltage of the proposed circuit can be controlled. In addition, the justification of theoretical analysis was certified by comparing to the experimental waveforms. In the future, this proposed converter show that it can be practically used as the system of fixed DC voltage source etc.

  • PDF

PRACTICAL EVALUATIONS OF PARASITIC RESONANT PWM DC-DC CONVERTERS FOR HIGH-POWER MEDICAL USE

  • H. Takano;J. Takahashi;Sun, J.M.;L... Gamage;M. Nakaoka
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.701-708
    • /
    • 1998
  • This paper presents a novel non-resonant PWM DC-DC converter for X-ray high-voltage power generator using the parasitic impedances of the high-voltage high-frequency link transformer with its output high-voltage control scheme and steady-state characteristics compared to the conventional series-parallel resonant DC-DC converter. The key point of this approach is to evaluate effectiveness of reduction of the turn ratio of the high-voltage high-frequency transformer on improvements in power conversion efficiency and the power factor applying a boost AC-DC converter as DC voltage source, especially in the long exposure term and light output load ranges.

  • PDF

A NEW SINGLE-PHASE Z-SOURCE CYCLOCONVERTER

  • Khai, Nguyen Minh;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.318-320
    • /
    • 2007
  • Single-phase cycloconverters are widely used for ac-ac power conversion especially for speed control of ac drives. In this paper, a new single-phase to single-phase Z-source cycloconverter topology is proposed. The proposed single-phase Z-source cycloconverter can boost to a desired voltage with various frequency. Thus, it is called a frequency step-down and amplitude voltage step-up converter. The operating principle of the proposed topology is presented. Analysis and simulation for this single-phase Z-source cycloconverter are also presented.

  • PDF

A Study of the High Voltage Power Supply using a Sixfold Voltage-Multiplying Rectifier (6배압 정류기를 이용한 고전압 전원장치에 관한 연구)

  • Ahn, Tae-Young;Gil, Yongl-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.19-26
    • /
    • 2015
  • This paper presents design, fabrication, and performance evaluation of a high voltage power supply for Carbon Nano Tube-based planar light sources. The proposed power supply employs an LLC resonant half-bridge converter and a sixfold voltage-multiplying rectifier. Steady-state characteristics of the voltage-multiplying rectifier are analyzed and used to derive the input-to-output voltage conversion ratio of the power supply. The input-to-output frequency response characteristics of the LLC tank circuit are analyzed and utilized in designing a proto-type power supply which produces a 15 KV output using a 400 V input source. The high-voltage transformer is fabricated using a sectional bobbin structure with an epoxy impregnation, in order to provide sufficient insulation for high voltage operations. The performance of the proposed power supply is confirmed with stable and reliable operations at the 15 KV output from no load to nominal load conditions. The proposed power supply is well suited as an electric ballast required stable operations of Carbon Nano Tube-based planar light sources.

A Study on AC/DC Converter Design of High Efficiency for Inverter Resistance Welder (인버터 저항용접기의 전력효율 향상을 위한 AC/DC 컨버터 설계에 관한 연구)

  • Kwak, D.K.;Jung, W.S.;Kang, W.C.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.40-41
    • /
    • 2016
  • The inverter resistance welder requires AC/DC converter of high efficiency because the converter changes a commercial ac power source to low voltage dc power source. Harmonic components that occur in the conversion process of converter decrease system power factor and deal great damage in electric power system. To improve such problems, this paper proposes a high efficiency AC/DC converter for inverter resistance welder. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit. As a result, the proposed AC/DC converter obtains low switching power loss and high efficiency.

  • PDF

The DC/DC Converter having the current source applying the new switching pattern (새로운 스위치 패턴을 적용한 전류원을 갖는 DC/DC 컨버터)

  • Kim, Sun-Pil;Ko, Hyun-Swok;Kim, Se-Min;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.275-284
    • /
    • 2017
  • As the high-level of the industrial and information age, the electricity become the indispensable element in the daily life including OA, FA, and computer, electric home appliances, and etc. In particular, The continuous use of the high capacity power supply system by applying a Switching Mode Power Supply(SMPS) according to the increase of the secondary side output terminal of the power load of the refrigerator of the home appliance or automation of the plant is pressed. The purpose using the way with this kind of high-capacity altogether is to supply the output voltage and output current regardless of the input voltage or to the external environmental conditions of the secondary-side load fluctuation. In this paper, a combination of a Buck Converter with Boost Converter by making a constant current source to control the inductor current and maintain stable power supply side operating characteristics, when load variations. While maintaining the same characteristics as conventional Buck Converter, and offer a DC-DC Converter system with the new switch pattern having a wide output range capable of operating in Buck-Boost Converter. In addition, after theoretical analysis, we carry out simulations and experiments to verify the validity and performance comparing with a conventional DC-to-DC converter.

The Study of Single Phase Source Stability consider for The DSC Cell's Operation Character by Controlled Feed-back Circuit

  • Lee, Hee-Chang
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.170-173
    • /
    • 2006
  • Recently, with increasing efficiency of DSC (photo-electrochemical using a nano-particle), The Performance of DSC solar generation system also needs improvement. The approach consists of a Fly-back DC-DC (transfer ratio 1:10) converter to boost the DSC cell voltage to 300VDC. The four switch (MOSFET) inverter is employed to produce 220V, 60Hz AC outputs. High performance, easy manufacturability, lower component count., safety and cost are addressed. Protection and diagnostic features form an important part of the design. Another highlight of the proposed design is the control strategy, which allows the inverter to adapt to the: requirements of the load as well as the power source. A unique aspect of the design is the use of the DSP TMS320LF2406 to control the inverter by current and voltage feed-back. Efficient and smooth control of the: power drawn from the DSC Cell is achieved by controlling the front end DC-DC converter in current mode.