• Title/Summary/Keyword: Voltage-Limiting SPD

Search Result 14, Processing Time 0.029 seconds

Coordination between Voltage-Limiting Surge Protective Devices in Surge Currents Caused by Direct Lightning Flashes

  • Shin, Hee-Kyung;Lee, Jae-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.116-125
    • /
    • 2015
  • This paper presents experimental results obtained from actual installation conditions of surge protective devices (SPDs), with the aim of understanding the coordination of cascaded Class I and Class II SPDs. This paper also proposes effective methods for selecting and installing coordinating cascaded SPDs. The residual voltage of each SPD and the energy sharing of an upstream Class I tested SPD and a downstream Class II tested SPD were measured using a $10/350{\mu}s$ current wave. In coordinating a cascaded voltage-limiting SPD system, it was found that energy coordination can be achieved as long as the downstream SPD is a metal oxide varistor with a higher maximum continuous operating voltage than the upstream SPD; however, it is not the optimal condition for the voltage protection level. If the varistor voltage of the downstream SPD is equal to or lower than that of the upstream SPD, the precise voltage protection level is obtained. However, this may cause serious problems with regard to energy sharing. The coordination for energy sharing and voltage protection level is fairly achieved when the cascaded SPD system consists of two voltage-limiting SPDs separated by 3 m and with the same varistor voltage.

Energy Coordination between Cascaded Voltage Limiting Type SPDs in Surge Currents due to Direct Lightning Flashes (종속 접속된 전압제한형 SPD의 직격뢰 서지전류에 대한 에너지협조)

  • Lee, Bok-Hee;Um, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.68-75
    • /
    • 2014
  • Cascaded applications of surge protective devices(SPDs) are required in order to reduce the stress on the electrical and electronics equipment being protected, and the energy coordination between the cascaded SPDs is very important. This paper deals with the experimental results obtained from the installation conditions of full-scale SPDs. The energy coordination between the upstream Class I SPD and the downstream Class II SPD was measured using a $10/350{\mu}s$ impulse current due to direct lightning flashes. The distances between the cascaded SPDs were 3, 10, and 50m, and the maximum test current was 12.5kA. As a result, the energy sharing between cascaded SPDs was dependent on the voltage protection level of each SPD and the distance between two SPDs. An overview of how to select SPD ratings in applications of cascaded SPDs system was discussed based on the energy coordination between the two SPDs. The proposed test results for the energy coordination between two-stage cascaded SPDs can be used in effective applications of SPDs.

Experimental Study on Temporary Overvoltage Characteristics of MOV Based Surge Protective Devices (MOV 기반 서지보호기의 일시과전압 특성에 대한 실험적 연구)

  • Shim, Hae-Sup;Jeon, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • Protection against lightning surge is an essential part of almost any electrical and electronic equipment today. Metal Oxide Varistor(MOV) is the single most important component in the overwhelming majority of the Surge Protective Devices(SPD) designated to provide such protection. In this paperr various types of MOV based SPD are inspected and experiments are carried out on the side effects of the low Measured Limiting Voltage(MLV) characteristics. Experiment results show that a lower MLV could cause a higher Temporary Overvoltage(TOV)-induced SPD failure rate in the field, and SPD are more likely to be victims rather than protectors in a TOV scenario. This means that from a safety perspective, the SPD should be specified with higher TOV withstand capability(UT) and faster SPD disconnector.

Simulation Method on the Protection Effects of Voltage-Limiting Type SPDs Associated with the Protective Distance (보호거리에 따른 전압제한형 SPD의 보호효과에 대한 시뮬레이션기법)

  • Lee, Bok-Hee;Kim, You-Ha;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.89-94
    • /
    • 2013
  • This paper presents a method of simulating the protection effects of surge protective devices(SPDs) depending on the protective distance and types of input impedance of load to be protected. In order to analyze the protective performances of voltage-limiting type SPDs associated with the reflection and oscillation phenomena, the terminal voltage across load being protected and the residual voltage of SPDs were simulated by using EMTP model as functions of the protective distance and types of input impedance of loads. As a consequence, SPDs should be installed by taking into account the protective distance and input impedance of loads to achieve reliable protection of electrical and electronic equipment from lightning and switching surges. It is expected that the simulation method proposed in this paper could be practically used in design for installing SPDs in low-voltage distribution systems.

Influences of the Length of Connecting Leads on the Energy Coordination in Coordinated SPD Systems (협조된 SPD시스템에서 접속선의 길이가 에너지협조에 미치는 영향)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.91-98
    • /
    • 2014
  • For the purpose of designing and applying the optimum surge protection scheme, multi-stage coordinated surge protective device(SPD) system is suitable to successfully fulfill its tasks; first, to divert a large amount of the transient energy, second, to clamp the overvoltage to the level below the withstand impulse voltage of the equipment to be protected. The length of SPD connecting leads shall be as short as possible. Long connecting leads will degrade the protection effect of SPDs. In this paper, the influences of the length of connecting leads on the energy sharing in a coordinated SPD system were investigated experimentally, and the simulation of determining the energy sharing and protection voltage level of each SPD depending on the length of connecting leads was carried out by using P-spice program. It was confirmed that the protection voltage level and energy sharing in coordinated SPD systems are strongly influenced by the length of connecting leads.

Protection of MOV Thermal Runaway and Safety Improvement of SPD using Built-in Instantaneous Trip Device (내장 순시 트립장치를 이용한 MOV의 열폭주 보호와 SPD의 안전성 개선)

  • Kim, Ju-Chul;Jeon, Joo-Sool;Ki, Che-Ouk;Choi, Gyung-Ray;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • SPDs are increasingly being used against lightning and switching surge according to the applicable revised standard and equipotential grounding system. SPDs are equipped usually with a MOV voltage regulating element. The MOV, however, always is exposed to the danger of thermal runaway resulting from inrushing temporary overvoltage and deterioration. In this paper, the authors made two prototype SPDs built-in Instantaneous trip device and analyzed their limiting voltage through test of the MOV breakdown. As the result of the analysis, the SPDs built-in Instantaneous trip device was proven to be effective for protecting MOV against thermal runaway and Instantaneous trip device react for limiting voltage is considered that is applicable to SPD.

Experimental Examinations on Protective Effects of SPDs Associated with the Protective Distance and Type of Load (보호거리와 부하 유형에 따른 SPD의 보호효과에 대한 실험적 고찰)

  • Lee, Bok-Hee;Kim, You-Ha;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.81-88
    • /
    • 2012
  • Surge protective devices(SPDs) are widely used as a most effective means protecting the electrical and electronic equipment against overvoltages such as lightning and switching surges. When installing SPDs, it is essential that the voltage protection level provided by SPDs should be lower than the withstand voltage of the equipment being protected. But even the proper selection of SPDs are achieved, the voltage at the equipment terminal may be higher than the residual voltage of SPD due to the reflection and oscillation phenomena. This paper was focused on the investigations of the conditions for which the equipment is protected by an SPD taking into account the influences of the protective distance and type of load. The protective effects of SPD with voltage-limiting component were analyzed as functions of types of load and protective distance between the SPD and load. As a result, in the cases of long protective distances, capacitive loads and loads with high resistance, the voltage at the load terminal was significantly higher than the residual voltage of SPD. It was found that the proper installation of SPDs should be carried out by taking into account the protective distance and type of load to achieve reliable protection of electronic equipments against surges.

Energy Coordination of Cascaded Voltage Limiting Type Surge Protective Devices (종속 접속된 전압제한형 서지방호장치의 에너지협조)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.29-35
    • /
    • 2013
  • For the purpose of designing and applying optimum surge protection, one of the essential points is to take into account the energy coordination between cascaded surge protective devices(SPDs) and it is important to obtain an acceptable sharing of the energy stress between two cascaded SPDs. In this paper, in case of two voltage-limiting SPDs connected in parallel, the amount of splitting impulse current and energy that flow through each SPDs is investigated as a function of the protective distance. As a result, the energetic coordination between cascaded SPDs is strongly dependent on the voltage protection level of SPDs and the protective distance. It was confirmed that the sharing of the energy between two cascaded SPDs and the limited voltage levels are appropriate when the voltage protection levels of both upstream and downstream SPDs are the same.

Experimental Study on Temporary Overvoltage Characteristic of Surge Protective Devices (서지보호기의 일시과전압특성에 대한 실험적 연구)

  • Shim, Hae-Sup;Jeon, Tae-Hyun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.344-347
    • /
    • 2009
  • Surge protective devices (SPD) have a special position because of the expectation that they perform an effective protective function against various kinds of surges. However, there exists a misconception that the SPD satisfying lower measured limiting voltage (MLV) should also protect equipment against temporary overvoltages (TOVs) as well. This paper inspects various types of MOV based SPDs and carry out experiments on the side effects of the low MLV characteristics. The experiment results show that a low MLV could cause a higher TOV-induced SPD failure rate in the field.

  • PDF

An Effective Approach of Installation of Surge Protective Devices for AC Mains (전원선용 SPD의 효과적인 설치기법)

  • Lee, Dong-Moon;Jeong, Dong-Cheol;Lee, Seung-Chil;Lee, Bok-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2229-2231
    • /
    • 2005
  • Recently, damages of electronic equipments due to lightning surges coming from AC power lines are increasing. In this work, to propose the effective installation methods of surge protective devices(SPDs), the protective performances of SPDs in actual-sized test circuits were experimentally investigated. In order to obtain the lowest limiting voltage and best protection, long leads of SPDs in installation practices are significantly undesirable. An effective installation method of SPDs for AC mains was proposed. The way of installing SPDs at every branch circuits is more effective than that of installing a SPD near the point of entry.

  • PDF