• 제목/요약/키워드: Voltage vector injection

검색결과 29건 처리시간 0.023초

Variable-magnitude Voltage Signal Injection for Current Reconstruction in an IPMSM Sensorless Drive with a Single Sensor

  • Im, Jun-Hyuk;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1558-1565
    • /
    • 2018
  • Three-phase current is reconstructed from the dc-link current in an AC machine drive with a single current sensor. Switching pattern modification methods, in which the magnitude of the effective voltage vector is secured over its minimum, are investigated to accurately reconstruct the three-phase current. However, the existing methods that modify the switching pattern cause voltage and current distortions that degrade sensorless performance. This paper proposes a variable-magnitude voltage signal injection method based on a high frequency voltage signal injection. The proposed method generates a voltage reference vector that ensures the minimum magnitude of the effective voltage vector by varying the magnitude of the injection signal. This method can realize high quality current reconstruction without switching pattern modification. The proposed method is verified by experiments in a 600W Interior permanent magnet synchronous machine (IPMSM) drive system.

Parameters On-line Identification of Dual Three Phase Induction Motor by Voltage Vector Injection in Harmonic Subspace

  • Sheng, Shuang;Lu, Haifeng;Qu, Wenlong;Guo, Ruijie;Yang, Jinlei
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권3호
    • /
    • pp.288-294
    • /
    • 2013
  • This paper introduces a novel method of on-line identifying the stator resistance and leakage inductance of dual three phase induction motor (DTPIM). According to the machine mathematical model, the stator resistance and leakage inductance can be estimated using the voltage and current values in harmonic subspace. Thus a method of voltage vector injection in harmonic subspace (VVIHS) is proposed, which causes currents in harmonic space. Then the errors between command and actual harmonic currents are utilized to regulate the machine parameters, including stator resistance and leakage inductance. The principle is presented and analyzed in detail. Experimental results prove the feasibility and validity of proposed method.

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • 제5권1호
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

Analysis of the Phase Current Measurement Boundary of Three Shunt Sensing PWM Inverters and an Expansion Method

  • Cho, Byung-Geuk;Ha, Jung-Ik;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.232-242
    • /
    • 2013
  • To obtain phase currents information in AC drives, shunt sensing technology is known to show great performance in cost-effectiveness and therefore it is widely used in low cost applications. However, shunt sensing methods are unable to acquire phase currents in certain operation conditions. This paper deals with the derivation of the boundary conditions for phase current reconstruction in three-shunt sensing inverters and proposes a voltage injection method to expand the measurable areas. As the boundary conditions are deeply dependent on the switching patterns, they are typically analyzed on the voltage vector plane for space vector pulse width modulation (SVPWM) and discontinuous pulse width modulation (DPWM). In the proposed method, the voltage injection and its compensation are conducted within one sampling period. This guarantees fast current reconstruction and the injected voltage is decided so as to minimize the current ripple. In addition to the voltage injection method, a sampling point shifting method is also introduced to improve the boundary conditions. Simulation and experimental results are presented to verify the boundary condition derivation and the effectiveness of the proposed voltage injection method.

Advanced Static Over-modulation Scheme using Offset Voltages Injection for Simple Implementation and Less Harmonics

  • Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.138-145
    • /
    • 2015
  • In this paper, a novel static overmodulation scheme (OVM) for space-vector PWM (SVPWM) is proposed. The proposed static OVM scheme uses the concept of adding offset voltages in linear region as well as overmodulation region to fully utilize DC-link voltage. By employing zero sequence voltage injection, the proposed scheme reduces procedures for achieving SVPWM such as complicated gating time calculation. In addition, this paper proposes a stepwise discontinuous angle movement in high modulation region in order to reduce Total Harmonic Distortion (THD). The validity of the proposed scheme is verified through theoretical analysis and experimental results.

폴전압을 이용한 SVPWM 인버터의 과변조 기법 (An Overmodulation Strategy for SVPWM Inverter Using Pole Voltage)

  • 韓 大 雄;金 相 勳
    • 전력전자학회논문지
    • /
    • 제7권2호
    • /
    • pp.149-157
    • /
    • 2002
  • 본 논문에서는 공간벡터 PWM(SVPWM) 인버터에서 직류단 전압을 최대로 이용하기 위한 새로운 과변조 기법을 제안한다. 제안된 기법은 영-시퀀스 신호인 옵셋 전압 주입 원리에 근거한 SVPWM의 개념을 사용하였다. 제안된 과변조 기법에서는 폴전압을 간단히 수정함으로써 과변조 영역 전반에 걸터 인버터의 출력전압을 선형적으로 제어할 수 있게 하였다. 제안된 기법은 시뮬레이션과 실험을 통하여 그 타당성을 확인하였다.

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

A Method to Compensate the Distorted Space Vectors in the Unbalanced Neutral Point Voltage of 3-level NPC PWM Inverters

  • Hyun, Seung-Wook;Hong, Seok-Jin;Lee, Jung-Hyo;Lee, Chun-Bok;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.455-463
    • /
    • 2016
  • This paper proposes a compensation method to improve the distorted space vectors when a 3-level Neutral Point Clamped (NPC) inverter has an unbalanced neutral point voltage. Since both the neutral point voltage of the DC link and the space vector of a 3-level NPC inverter are closely related depending on the output load connecting state, a distorted space vector can occur when the neutral point voltage of a 3-level NPC inverter is unbalanced. The proposed method can improve the distorted space vectors by adjusting the injection time of the small and medium vectors and by modulating the amplitude of the carrier waveforms. In this paper, the proposed method is verified by both simulation and experimental results based on a 3-level NPC inverter.

A Neutral-Point Voltage Balance Controller for the Equivalent SVPWM Strategy of NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2109-2118
    • /
    • 2016
  • Based on the space vector pulse width modulation (SVPWM) theory, this paper realizes an easier SVPWM strategy, which is equivalently implemented by CBSPWM with zero-sequence voltage injection. The traditional SVPWM strategy has no effect on controlling the neutral-point voltage balance. In order to solve the neutral-point voltage unbalance problem for neutral-point-clamped (NPC) three-level inverters, this paper proposes a neutral-point voltage balance controller. The proposed controller realizes controlling the neutral-point voltage balance by dynamically calculating the offset superimposed to the three-phase modulation waves of an equivalent SVPWM strategy. Compared with the traditional SVPWM strategy, the proposed neutral-point voltage balance controller has a strong ability to balance the neutral-point voltage, has good steady-state performance, improves the output waveforms quality and is easy for digital implementation. An experiment has been carried out on a NPC three-level inverter prototype based on a digital signal processor-complex programmable logic device (DSP-CPLD). The obtained experimental results verify the effectiveness of the proposed neutral-point voltage balance controller.

Torque Density Improvement of Five-Phase PMSM Drive for Electric Vehicles Applications

  • Zhao, Pinzhi;Yang, Guijie
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.401-407
    • /
    • 2011
  • In order to enhance torque density of five-phase permanent magnetic synchronous motor with third harmonic injection for electric vehicles (EVs) applications, optimum seeking method for injection ratio of third harmonic was proposed adopting theoretical derivation and finite element analysis method, under the constraint of same amplitude for current and air-gap flux. By five-dimension space vector decomposition, the mathematic model in two orthogonal space plane, $d_1-q_1$ and $d_3-q_3$, was deduced. And the corresponding dual-plane vector control method was accomplished to independently control fundamental and third harmonic currents in each vector plane. A five-phase PMSM prototype with quasi-trapezoidal flux pattern and its fivephase voltage source inverter were designed. Also, the dual-plane vector control was digitized in a single XC3S1200E FPGA. Simulation and experimental results prove that using the proposed optimum seeking method, the torque density of five-phase PMSM is enhanced by 20%, without any increase of power converter capacity, machine size and iron core saturation.