• Title/Summary/Keyword: Voltage transformer

Search Result 1,683, Processing Time 0.032 seconds

The compact size piezoelectric transformer to lower an operating voltage of plasma display devices

  • Choi, Chung-Sock;Ahn, Sung-Il;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.719-720
    • /
    • 2009
  • We suggest a new approach to lower the operating voltage of plasma display devices using a piezoelectric transformer (PT). $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ (PMNT) was used as a piezoelectric material. The Rosen-type PT, with a compact size of 10 mm ${\times}$ 20 mm ${\times}$ 0.3 mm, was fabricated on a glass substrate. The fabricated PT was operated as a half-wave vibration mode at around 80~90 kHz. The maximum voltage step-up ratio was 3 at 87.8 kHz when the input voltage was 10.32 V (peak-to-peak).

  • PDF

Three-phase Low Voltage Diode Rectifier Circuit not using a Step-Down Transformer (강압 트랜스를 이용하지 않은 3상 저전압 다이오드 정류회로)

  • Mun, S.P.;Suh, K.Y.;Lee, H.W.;Kim, Y.M.;Kang, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.215-218
    • /
    • 2001
  • In conventional three-phase rectifiers, it was necessary to use a transformer to obtain low output voltage. In this paper, we propose a new three-phase rectifiers circuit that achieves low voltage by using a very simple circuit configuration that does not have a transformer and does not need any complex control. We also describe the operation principle of the proposed circuit, and derive a theoretical formula for its current waveform. On the basis of this formula it also explores the theoretical input/output current characteristics, theoretical current amplification factor, and theoretical output voltage characteristics of these theoretical values with experimentally obtained input/output current characteristics, current amplification factor, and output voltage characteristics, allowed us to confirm the soundness of our theoretical analyses.

  • PDF

A Study on the Characteristics of Circular Piezoelectric Transformer which has Crescent-shaped Input Type (Crescent-shaped Input Type 원형압전변압기의 특성 연구)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a new disk-type piezoelectric transformer. The input side of the transformer has a crescent-shaped electrode and the output side has a focused poling direction. The piezoelectric transformers operated in each transformer's resonance vibration mode. The electrodes and poling directions on commercially available piezoelectric ceramic disks were designed so that the planar or shear mode coupling factor $(k_p\;k_{15})$ becomes effective rather than the transverse mode coupling factor $(k_{31})$. ANSYS finite element code was used to analyze transformer behavior and to optimize electrode and poling configurations. The voltage step-up ratio of the proposed transformer has been markedly improved in comparison with that of the equivalent rectangular(Rosen) type. A single layer prototype transformer, $20\sim30mm$ in diameter and $1.0\sim3.5mm$ thick, was fabricated, such as step-up ratio, power transformation efficiency, and temperature were measured. While the transformer was driving a Cold Cathode Fluorescent Lamp(CCFL), the temperature field of the transformer was also observed.

Design of an HTS Transformer with OLTC (OLTC를 고려한 고온 초전도 변압기의 설계)

  • Choi, J.H.;Lee, S.W.;Park, M.J.;Joo, H.G.;Han, J.H.;Hahn, S.Y.;Choi, K.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.67-71
    • /
    • 2007
  • HTS transformers which have been developed until now had only fundamental structures. Among the auxiliary functions of conventional transformers, voltage regulating is the most important one. For the voltage regulation, conventional transformers are equipped with on load tap changers (OLTCS). In this paper, we describe the possibility of the HTS transformer with OLTC. For the case study, we designed a single phase 33 MVA HTS transformer with OLTC. It is one of three individual HTS transformers which composes a 3 phase, 100 MVA transformer. It is expected to substitute for a 3 phase, 60 MVA conventional transformer in Korea. The parameters of an HTS transformer are varied due to the gap length between primary and secondary windings. The length was decided for the transformer to have the impedance of 12 %. Its size was limited to the one of the conventional transformer. The characteristics of the HTS transformer were analyzed in both case of having OLTC and not.

Conceptual Design and 3-D Electromagnetic Analysis of 1MVA HTS Transformer (1MVA 고온 초전도 변압기 개념 설계 및 3차원 전자장 해석)

  • 박찬배;김우석;최경달;주형길;홍계원;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.1
    • /
    • pp.23-26
    • /
    • 2003
  • This paper presents conceptual design and 3-D electromagnetic analysis of IMVA transformer with BSCCO-2223 High Tc Superconducting (HTS) tapes. The rated voltages of each sides of the transformer are 22.9 kV and 6.6 kV, and double pancake windings were adopted. High voltage and Low voltage sides were composed of several double pancake windings. Four HTS tapes were wound in parallel for the windings of low voltage side and were transposed in order to distribute the currents equally in each conductor The transformer core was designed as a shell type core made of laminated silicon steel plates and the core is separated with the windings by a cryostat with Fiberglass Reinforced Plastics(FRP). A sub-cooling system using L$N_2$ were designed to maintain the coolant temperature 65K. Finally perpendicular components of magnetic field applied to tapes were calculated 0.247 in the rated operation using 3-D analysis. A real 1MVA HTS transformer will be manufactured in near future based on the design parameters presented in this paper.

High Efficiency and Small Size Switch Mode Line Transformer(SMLT) (고효율 및 소형 스위치모드 라인 트랜스포머)

  • Kim, Jin-Hong;Yang, Jung-Woo;Jang, Du-Hee;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.237-243
    • /
    • 2019
  • A high-efficiency and small-sized switched-mode line transformer (SMLT) is proposed in this study. The conventional structure of an adapter is composed of line transformer and rectifiers. This structure has a limit in miniaturizing due to low-frequency line transformer. Another structure is composed of power factor correction (PFC) and DC/DC converter. This structure has a limit in reducing volume due to two-stage structure. As the proposed SMLT is composed of an LLC resonant converter, a high-frequency transformer can be adopted to achieve isolation standards and size reduction. This proposed structure has different operation modes in accordance with line input voltage to overcome poor line regulation. In addition, the proposed SMLT is applied to the front of a conventional PFC converter, because the SMLT output voltage is restored to rectified sinusoidal wave by using a full-bridge rectifier in the secondary side. The design of the PFC converter is easy, because the SMLT output voltage is controlled as rectified sinusoidal wave. The validity of the proposed converter is proven through a 350 W prototype.

Electrical Charateristics of Step-down Piezoelectric Transformer

  • Shin Hoonbum;Ahn HyungKeun;Han Deuk-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.47-51
    • /
    • 2001
  • In this paper, we have explained electrical characteristics of a step-down Rosen type piezoelectric transformer for AC-adapter. When the electric voltage is applied to the driving piezoelectric vibrator polarized in the longitudinal direction, then output voltage is generated at the generating piezoelectric vibrator polarized in the thickness direction due to the piezoelectric effects. From the piezoelectric direct and converse effects, symbolic expressions between the electric inputs and outputs of the step-down piezoelectric transformer have derived with an equivalent circuit model. With the symbolic expressions, load and frequency characteristics have discussed through simulation. Output voltage and current from a 11-layered and a 13-layered piezoelectric transformers were measured under the various conditions of loads and frequencies. First we measured resonant frequency from impedance curve and got equivalent impedance value of the piezoelectric transformer from admittance plot. It was shown from experiments that output voltage has increased and resonant frequency has changed according to various resistor loads. Output current has decreased inversely proportional to changing of loads. Moreover, the measured values of output voltage and current are well agreed with the simulated values of the proposed equivalent circuit model.

  • PDF

High Voltage Resonant DC-DC Converter Design for X-Ray Imaging (X-Ray 진찰용 고전압 공진형 DC-DC 컨버터 설계)

  • Baek, Jong-Mu;Joo, Hae-Jong;Cho, Moon-Taek;Lee, Chung-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • In this paper, including the X-ray high voltage resonant inverter generators and high frequency high voltage transformer operating systems is proposed. X-ray generator removes the noise and was smaller, 50[kHz] to work more with the driving frequencies, and that occurred when the normal power supply available due to noise, survey the conditions and solve the problems of the poor was a problem. In addition, X-ray tube voltage, frequency controllers and tube current controller filament heating voltage transformer for high frequency transformer design and manufacture of doing X-ray devices were to become more efficient operation.

High precision Automatic Voltage Regulator by using series transformer (직렬 변압기를 이용한 고정밀 자동전압조절기)

  • Zhang, Lei;Lee, Hwa-Chun;Jung, Tae-Uk;Nam, Hae-Kon;Nam, Soon-Ryul;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.574-576
    • /
    • 2008
  • Now there are two types Non-contact compensation AC automatic voltage regulator (A.V.R). One is transformer compensation regulator, whose principle is the combination of multiple compensation transformers, do the compensation by turning on and off the connections of the transformer through the multi-full bridge circuit. This method removed the mechanical drive and contacts, which increases the life and the dynamic performance of the A.V.R. However, the compensation is multilevel, and it needs many compensation transformers and switches, the circuit is complex, the compensation precision is low. Another type is PWM switch AC regulator, whose principle is getting the AC voltage from the input, then induce the AC compensation voltage through commutating and high frequency PWM transforming, and phase tracking. Here the compensation is step-less, the compensation precision is high, and the response is fast. But the circuit is complex, and it needs an inverse compensation transformer, which is difficult to realize high-power applications. In this paper, it shows an Automatic Voltage Regulator which use high frequency PWM inverter do compensation. This A.V.R has the function as the custom-power, which make the performance of the power supply in a high level.

  • PDF

A CW $CO_2$ Laser Using a High Voltage Dc-dc Converter with Half-bridge Resonant Inverter and Cockroft-Walton Multiplier

  • Chung, Hyun-Ju;Joung, Jong-Han;Kim, Geun-Young;Min, Byoung-Dae;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.123-129
    • /
    • 2003
  • We propose a high voltage dc-dc converter for a CW (continuous wave) $CO_2$ laser system using a current resonant half-bridge inverter and a Cockcroft-Walton circuit. This high voltage power supply includes a 2-stage voltage multiplier driven by a regulated half-bridge series resonant inverter. The inverter drives a step-up transformer and the secondary transformer is applied to the voltage multiplier. It is highly efficient because of the reduced amount of switching losses by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up secondary transformer combined with the Cockroft-Walton circuit. We obtained a maximum laser output power of 44 W and a maximum system efficiency of over 16%.