• 제목/요약/키워드: Voltage profile

검색결과 355건 처리시간 0.022초

Low Specific On-resistance SOI LDMOS Device with P+P-top Layer in the Drift Region

  • Yao, Jia-Fei;Guo, Yu-Feng;Xu, Guang-Ming;Hua, Ting-Ting;Lin, Hong;Xiao, Jian
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.673-681
    • /
    • 2014
  • In this paper, a novel low specific on-resistance SOI LDMOS Device with P+P-top layer in the drift region is proposed and investigated using a two dimensional device simulator, MEDICI. The structure is characterized by a heavily-doped $P^+$ region which is connected to the P-top layer in the drift region. The $P^+$ region can modulates the surface electric field profile, increases the drift doping concentration and reduces the sensitivity of the breakdown voltage on the geometry parameters. Compared to the conventional D-RESURF device, a 25.8% decrease in specific on-resistance and a 48.2% increase in figure of merit can be obtained in the novel device. Furthermore, the novel $P^+P$-top device also present cost efficiency due to the fact that the $P^+$ region can be fabricated together with the P-type body contact region without any additional mask.

압전 변압기의 제어 방식에 따른 모델링 및 안정화분석 (Stabilization Analysis of Piezo-electric Converter for PFM and PWM Control)

  • 윤석택;박성우;원영진;이진호;김진희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.401-401
    • /
    • 2009
  • Recently, demands for the development of compact, lightweight power supplies with higher power density and higher efficiency have been increased. Since Piezoelectric Transformer (PT) was emerged in device and material industry, it has been suggested as a viable alternative to the magnetic transformer in some applications. PT has some advantages such as low profile and mechanical energy transfer with little electromagnetic interface (EMI). Also, PT can provide high voltage stepping ratio with good isolation and requires no copper windings saving copper usage especially for large voltage conversion differences. Conventional control of PT converter has mainly two-way. One is the pulse frequency modulation (PFM) control method and the other is the pulse width modulation (PWM) control with frequency fixed method. It is known that the maximum PT efficiency can be obtained when it operates near the resonant frequency of the PT. And, also PT's resonant frequency moves according to the load condition. Therefore, selection of PT converter control method is very difficult. This paper analyzes general piezo-electric converter modeling and proposes a guide-line to selection of control method and stabilization control.

  • PDF

$KNO_3$$HNO_3$ 전해액이 Cu에 미치는 영향 (Effect of copper surface to $HNO_3$ and $KNO_3$ electrolyte)

  • 서용진;한상준;박성우;이영균;이성일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.486-486
    • /
    • 2009
  • In this paper, the current-voltage (I-V) curves, such as linear sweep voltammetry (LSV) and cyclic voltammetry (CV), were employed to evaluate the effect of electrolyte concentration on the electrochemical reaction trend. From the I-V curve, the electrochemical states of active, passive, transient and trans-passive could be characterized. And then, we investigated that how this chemical affect the process of voltage-induced material removal in electrochemical mechanical polishing (ECMP) of Copper. The scanning electron microscopy (SEM) and energy dispersive spectroscopy EDS) analyses were used to observe the surface profile. Finally, we monitored the oxidation and reduction process of the Cu surface by the repetition of anodic and cathodic potential from cyclic voltammetry (CV) method in acid- and alkali-based electrolyte. From these analyses, it was important to understand the electrochemical mechanisms of the ECMP technology.

  • PDF

KSLV-I 상단부 고전압 부하용 TVC 배터리 개발 (Development of the TVC Battery for High Voltage Loads in KSLV-I Upper Stage)

  • 김명환;마근수;임유철;이재득
    • 항공우주기술
    • /
    • 제7권2호
    • /
    • pp.110-116
    • /
    • 2008
  • 본 논문에서는 TVC 배터리의 설계 개념, 특성과 환경 및 성능 시험 결과에 대해 간략히 보인다 KSLV-I 상단에 탑재되는 TVC 배터리는 168개의 소니 18650VT 고전력 리튬이온 셀을 사용하며, 84개의 셀을 직렬로 구성한 후 각 열을 병렬로 2개 연결하여 추력 벡터제어(TVC) 시스템의 미션에 요구되는 전압(공칭 270V)과 전류를 공급한다. TVC 시스템의 부하 특성은 짧은 시간 동안 높은 전류 출력을 요구하는 펄스의 형태를 가진다. 무게를 최소화하며 시스템 요구 전력을 공급하기 위해 18650VT 셀을 적용하였다. 18650VT 셀은 고전력 응용분야를 위해 설계된 모델로 10C 연속 방전 능력을 갖고 있다.

  • PDF

Bluetooth Low-Energy Current Sensor Compensated Using Piecewise Linear Model

  • Shin, Jung-Won
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.283-292
    • /
    • 2020
  • Current sensors that use a Hall element and Hall IC to measure the magnetic fields generated in steel silicon core gaps do not distinguish between direct and alternating currents. Thus, they are primarily used to measure direct current (DC) in industrial equipment. Although such sensors can measure the DC when installed in expensive equipment, ascertaining problems becomes difficult if the equipment is set up in an unexposed space. The control box is only opened during scheduled maintenance or when anomalies occur. Therefore, in this paper, a method is proposed for facilitating the safety management and maintenance of equipment when necessary, instead of waiting for anomalies or scheduled maintenance. A Bluetooth 4.0 low-energy current-sensor system based on near-field communication is used, which compensates for the nonlinearity of the current-sensor output signal using a piecewise linear model. The sensor is controlled using its generic attribute profile. Sensor nodes and cell phones used to check the signals obtained from the sensor at 50-A input currents showed an accuracy of ±1%, exhibiting linearity in all communications within the range of 0 to 50 A, with a stable output voltage for each communication segment.

Power Distribution Network Modeling using Block-based Approach

  • Chew, Li Wern
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.75-79
    • /
    • 2013
  • A power distribution network (PDN) is a network that provides connection between the voltage source supply and the power/ground terminals of a microprocessor chip. It consists of a voltage regulator module, a printed circuit board, a package substrate, a microprocessor chip as well as decoupling capacitors. For power integrity analysis, the board and package layouts have to be transformed into an electrical network of resistor, inductor and capacitor components which may be expressed using the S-parameters models. This modeling process generally takes from several hours up to a few days for a complete board or package layout. When the board and package layouts change, they need to be re-extracted and the S-parameters models also need to be re-generated for power integrity assessment. This not only consumes a lot of resources such as time and manpower, the task of PDN modeling is also tedious and mundane. In this paper, a block-based PDN modeling is proposed. Here, the board or package layout is partitioned into sub-blocks and each of them is modeled independently. In the event of a change in power rails routing, only the affected sub-blocks will be reextracted and re-modeled. Simulation results show that the proposed block-based PDN modeling not only can save at least 75% of processing time but it can, at the same time, keep the modeling accuracy on par with the traditional PDN modeling methodology.

자화된 유도결합형 플라즈마를 이용한 Al-Nd 박막의 식각특성에 관한 연구

  • 한혜리;이영준;오경희;홍문표;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.246-246
    • /
    • 1999
  • TFT-LCD 제조공정의 발전에 따라, 박막층(a-Si, SiNx, gate 전극, ITO 등)에 대한 습식공정을 대치하는 건식식각이 선호되고 있다. scan signal의 전파지연시간을 단축시키는 장점을 갖는 Al gate 전극의 건식식각의 경우, 높은 식각속도와 slope angle의 조절, 그리고 식각균일도가 요구된다. 이러한 Al gate 전극물질로는 Al에 Ti이나 Nd와 같은 금속을 첨가하여 post annealing 동안에 발생하는 hillock을 방지하고 더불어 낮은 resistivity(<10$\mu$$\Omega$cm)와 열과 부식에 대한 높은 저항성을 얻을 수 있다. 그러나 Al-Nd alloy 박막은 식각속도와 photoresist에 대한 식각선택도가 낮아 문제로 지적되고 있다. 본 실험에서는 고밀도 플라즈마원의 일종인 자화된 고밀도 유도결합형 플라즈마를 이용하여 식각가스 조합, inductive power, bias voltage 그리고 공정압력 등의 다양한 공정변수에 따른 Al-Nd film의 기본적인 식각특성 변화를 관찰하였다. 식각시 chloring gas를 주요 식각가스로 사용하고 BCl, HBr 등을 10mTorr의 일정한 압력을 유지하는 조건하에서 첨가하였으며 inductive power는 5100W~800W, bias voltage는 -50V~-200V까지 변화를 주었다. 식각공정의 전후를 통하여 Al-Nd 박막표면의 조성변화를 관찰하기 위하여 X-ray photoelectron spectroscopy(XPS)를 이용하였으며 공정변수에 따른 식각후 profile 관찰은 scanning electron microscopy(SEM)을 통하여 관찰하였다. Al-Nd 식각속도는 100% Cl2 플라즈마에 비해 BCl3의 양이 증가할수록 증가하였으며 75%의 BCl3 gas를 첨가하였을 때 가장 높은 식각속도를 얻을 수 있었다. 또한 SEM을 이용한 표면분석으로 roughness가 감소된 공정조건을 찾을 수 있었다.

  • PDF

A Review of the Flashover Performance of High Voltage Insulators Constructed with Modern Insulating Materials

  • Khatoon, Shabana;Khan, Asfar Ali;Singh, Sakshi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권5호
    • /
    • pp.246-249
    • /
    • 2017
  • Pollution flashover of outdoor insulators is a common risk, which affects the safe operation of overhead transmission networks. Early electrical power systems, which feature insulators made from ceramic materials have been used all over the world with good performance. At present, non-ceramic insulators are in common use, as a result of their good electrical as well as mechanical properties. The aim of this paper is to discuss and compare the flashover performance of insulators typically used in power lines, such as, porcelain, ethylene-propylene-diene-monomer (EPDM) rubber, room temperature vulcanized (RTV) and high temperature vulcanized (HTV) coated silicone rubber. The effect of various parameters, including the severity of pollution, ice accumulation, and shade profile, are considered.. From the studies reviewed it was concluded that there is a distinct difference in the flashover voltages of different types of insulators, and the silicone provides the best flashover performance of all insulating materials.

Prediction of Change in Equivalent Circuit Parameters of Transformer Winding Due to Axial Deformation using Sweep Frequency Response Analysis

  • Sathya, M. Arul;Usa, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.983-989
    • /
    • 2015
  • Power transformer is one of the major and key apparatus in electric power system. Monitoring and diagnosis of transformer fault is necessary for improving the life period of transformer. The failures caused by short circuits are one of the causes of transformer outages. The short circuit currents induce excessive forces in the transformer windings which result in winding deformation affecting the mechanical and electrical characteristics of the winding. In the present work, a transformer producing only the radial flux under short circuit is considered. The corresponding axial displacement profile of the windings is computed using Finite Element Method based transient structural analysis and thus obtained displacements are compared with the experimental result. The change in inter disc capacitance and mutual inductance of the deformed windings due to different short circuit currents are computed using Finite Element Method based field analyses and the corresponding Sweep Frequency Responses are computed using the modified electrical equivalent circuit. From the change in the first resonant frequency, the winding movement can be quantified which will be useful for estimating the mechanical withstand capability of the winding for different short circuit currents in the design stage itself.

Optimal Placement of Distributed Generators in Radial Distribution System for Reducing the Effect of Islanding

  • K, Narayanan.;Siddiqui, Shahbaz A.;Fozdar, Manoj
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.551-559
    • /
    • 2016
  • The present trend of increasing the penetration levels of Distributed Generator (DG) in the distribution network has made the issue of Islanding crucial for the reliable operation of the network. The islanding, if not detected early may lead to the collapse of the system as it can drive the distribution system to the cascaded failure. In this paper, an extensive study of the effect of DG placement and sizing is performed by dividing the system into different zones to obtain a reduced effect of islanding. The siting and sizing of DG is carried out to improve the overall voltage profile or/and reduction in active power loss using two stage Genetic Algorithm (GA). In the first stage a basic knockout selection is considered and the best population is taken for next stage, where roulette selection for crossover and mutation is performed for optimal placement and sizing of DGs. The effect of the islanding, due to load variations is reduced by optimal siting and sizing of DG. The effectiveness of the proposed scheme is tested on the IEEE 33 and 69 radial bus systems and the results obtained are promising.