• Title/Summary/Keyword: Voltage phase

Search Result 4,304, Processing Time 0.053 seconds

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter Under Line Voltage Unbalance Condition

  • Jeong Seung-Gi;Lee Dong-Ki;Park Ki-Won
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.808-815
    • /
    • 2001
  • The three-phase diode rectifier with a capacitive filter is highly sensitive to line voltage unbalance, and may cause significantly unbalanced line currents even under slightly unbalanced voltage condition. This paper presents an analysis of this 'unbalance amplification' effect for an ideal rectifier circuit without ac-and dc-side inductors. The voltage unbalance is modeled by introducing a deviation voltage superimposed on balanced three-phase line voltages. With proper approximations, closed-form expressions for symmetrical components of the line current and current unbalance factor are derived in terms of the voltage unbalance factor, filter reactance, and load current. The validity of analytical predictions is confirmed by simulation.

  • PDF

The High Power Factor Control of a Single Phase PWM Converter using a Reduced-Order Luenberger Observer (축소차원 Luenberger 관측기를 이용한 단상 PWM 컨버터의 고역률 제어)

  • Yang, Lee-U;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.529-535
    • /
    • 2000
  • In this paper, a current control system of a single phase PWM AC/DC converter using a reduced-order Luenberger observer without source voltage sensors is proposed. The sinusoidal input current and unity input power factor are realised based on the estimated source voltage performed by the reduced-order Luenberger observer using actual currents and DC link voltage. The poles of the reduced-order Luenberger observer are placed in the left half plane of s-plane by the pole-placement method in order to acquire the stability of the observer. The magnitude and the phase of the estimated source voltage are used to accomplish the unity power factor. The proposed method is implemented by DSP(Digital Signal Processor). Experimental Results verify that the reduced-order observer estimates the source voltage without the estimation error and the control system accomplishes the unity power factor, and constant DC link voltage.

  • PDF

DC-Link Voltage Unbalance Compensation of Reactive Power Compensator using Multi-level Inverter (멀티레벨 인버터를 이용한 무효전력 보상장치에서의 DC-Link 전압 불평형 보상)

  • Kim, Hyo-Jin;Jung, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, we use a static synchronous compensator(STATCOM) with cascaded H-bride topologies, because it is easy to increase capacity and to reduce total harmonic distortion(THD). When we use equipment for reactive power compensation, dc-link voltage unbalances occur from several reasons although loads are balanced. In the past, switching pattern change of single phase inverter and reference voltage magnitude change of inverter equipped with power sensor have been used for dc-link voltage balance. But previous methods are more complicated and expensive because of additional component costs. Therefore, this paper explains reasons of dc-link voltage unbalance and proposes solution. This solution is complex method that is composed of reference voltage magnitude change of inverter without additional hardware and shifted phase angle of inverter reference voltages change. It proves possibility through 1000[KVA] system simulation.

A Study on the Voltage Control of a Single Phase Full-bridge Inverter using SPWM Driving Method (SPWM 구동 방식을 이용한 단상 풀 브리지 인버터의 전압 제어에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.851-858
    • /
    • 2017
  • In this study, the voltage control system of a single phase full bridge inverter was designed based on the SPWM driving method. The voltage control system consists of a single-phase full-bridge inverter, a PI controller for linearly compensating the error between the reference voltage and the output voltage, a PWM driving circuit for generating the gate signal using the SPWM method from the controller signal, and an LC filter for filtering the inverter output voltage waveform into sinusoidal waveform. Finally, the voltage control system of a single-phase full-bridge inverter based on the PWM driving method was modeled using EMTP-RV and by showing that the output voltage accurately converges the reference voltage through several simulation examples, the validity of the control system design was verified.

Analysis of Voltage Unbalance in the Electric Railway Depot Using Two-port Network Model (4단자 회로망 모델을 이용한 전기철도 차량기지의 전압불평형 해석)

  • Chang, Sang-Hoon;Oh, Kwang-Hae;Kim, Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.5
    • /
    • pp.248-254
    • /
    • 2001
  • The traction power demand highly varies with time and train positions and the traction load is a large-capacity current at single phase converted from 3-phase power system. Subsequently, each phase current converted from 3-phase power system cannot be maintained in balance any longer and thus the traction load can bring about imbalance in three-phase voltage. Therefore, the exact assessment of voltage unbalance must be carried out preferentially as well as load forecast at stages of designing and planning for electric railway system. The evaluation of unbalance voltage in areas, such as electric railway depots should be a prerequisite with more accuracy. The conventional researches on voltage unbalance have dealt with connection schemes of the transformers used in ac AT-fed electric railroads system and induced formulas to briefly evaluate voltage unbalance in the system(3). These formulas are still being used widely due to their easy applicabilities on voltage unbalance evaluation. Meanwhile, they don't take into account detailed characteristics of ac AT-fed electric railroads system, being founded on some assumptions. Accordingly. accuracy still remains in question. This paper proposes a new method to more effectively estimate voltage unbalance index. In this method, numerous diverted circuits in electric railway depots are categorized in three components and each component is defined as a two-port network model. The equivalent circuit for the entire power supply system is also described into a two-port network model by making parallel and/or series connections of these components. Efficiency and accuracy in voltage unbalance calculation as well can be promoted by simplifying the circuits into two-port network models.

  • PDF

A Study on Islandig Characteristics using Phase Angle Adjustment of Distributed Generation (배전계통연계 분산전원의 위상변화에 따른 고립운전 파라미터 특성)

  • Bang, Ji-Yoon;Kim, Hak-Man;Lee, Bock-Ku;Sim, Jae-Sun;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.525-526
    • /
    • 2006
  • Recently, much research has been done and many improvements have been developed for islanding protection of distributed generation(DG). Anti-islanding protection for DG must be act very quickly to prevent equipment damage at the time of disconnection and for the safety of maintenance and repair personnel. DG-based detection methods have included both passive and active types, and now research has shifted towards new anti-islanding detection methods that make up for the defects of the previous types. Because differences occur between the utility grid and the DG when connecting and disconnecting depending on the phase difference, voltage, current, relative capacity of electric power, and system operation characteristics, voltage phase angle is an important consideration. In this paper, we simulated islanded operation characteristics comparing phase difference of DG and the connected utility grid, and analyzed various parameters (real power, reactive power, RMS voltage, RMS current, power factor angle, and frequency) by varying the DG's voltage phase angle. Using this information, we propose a suitable DG voltage phase angle for enhanced passive islanding detection techniques.

  • PDF

Design of Low voltage High speed Phase Locked Loop (고속 저전압 위상 동기 루프(PLL) 설계)

  • Hwang, In-Ho;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.267-269
    • /
    • 2007
  • PLL(Phase Locked Loop) are widely used circuit technique in modern electronic systems. In this paper, We propose the low voltage and high speed PLL. We design the PFD(Phase Frequency Detector) by using TSPC (True Single Phase Clock) circuit to improve the performance and solve the dead-zone problem. We use CP(Charge Pump} and LP(Loop filter) for Negative feedback and current reusing in order to solve current mismatch and switch mismatch problem. The VCO(Voltage controlled Oscillator) with 5-stage differential ring oscillator is used to exact output frequency. The divider is implemented by using D-type flip flops asynchronous dividing. The frequency divider has a constant division ratio 32. The frequency range of VCO has from 200MHz to 1.1GHz and have 1.7GHz/v of voltage gain. The proposed PLL is designed by using 0.18um CMOS processor with 1.8V supply voltage. Oscillator's input frequency is 25MHz, VCO output frequency is 800MHz and lock time is 5us. It is evaluated by using cadence spectra RF tools.

  • PDF

The Characteristics of Superposed Ozonizer using Three-Phase Voltage (3상전압을 이용한 중첩방전형 오존발생기의 특성)

  • Kim, Yeong-Hun;Chun, Byung-Joon;Song, Hyun-Jig;Youn, Young-Dae;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2259-2261
    • /
    • 1999
  • In this paper, an ozonizer, which can generate individual and superposed silent discharge, using three-phase voltage has been designed and manufactured. The ozonizer consists of 3 electrodes(Central Electrode, Internal Electrode and External Electrode) and 2 gaps(gap between Central Electrode and Internal Electrode, gap between Internal Electrode and External Electrode). Ozone is generated according to voltage supplying method to each electrode by individual silent discharge and three-phase superposed discharge. The characteristics of ozone generation were investigated with variation of discharge power and the quantity of supplied gas($O_2$). In case of individual silent discharge, the maximum values of ozone concentration, ozone generation and ozone yield were obtained between internal electrode and external electrode, and its values were 2300[ppm], 570[mg/h] and 745[g/kWh] respectively. Each maximum values was 5039[ppm], 1773[mg/h] and 851[g/kWh] respectively, when three-phase superposed silent discharge was employed. Therefore, characteristics of ozone generation with three-phase voltage are improved compared with single-phase voltage because silent discharge is generated continuously.

  • PDF

3-Dimensional SVM Technique for the Three-Phase Four-Leg Voltage Source Inverter System (3상 4레그 전압형 인버터를 위한 3차원 공간벡터변조 기법)

  • Doan, Van-Tuan;Choi, Woo-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.111-112
    • /
    • 2013
  • The three-phase four-leg voltage source inverter (VSI) topology can be an interesting option for the three phase-four wire system. With an additional leg, this topology can handle the neutral current, hence the DC link capacitance can be reduced significantly. In this paper the three dimensional space vector modulation (3D SVM) in ${\alpha}{\beta}{\gamma}$ coordinates for the three-phase four-leg VSI is presented. By using the 3D SVM method, the DC link voltage can be reduced by 16% compared with the split DC link capacitor topology and the output distortion can also be reduced under the unbalanced load condition.

  • PDF

Battery Energy Storage System Based Controller for a Wind Turbine Driven Isolated Asynchronous Generator

  • Singh, Bhim;Kasal, Gaurav Kumar
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents an investigation of a voltage and frequency controller for an isolated asynchronous generator (IAG) driven. by a wind turbine and supplying 3-phase 4-wire loads to the isolated areas where a grid is not accessible. The control strategy is based on the indirect current control of the VSC (voltage source converter) using the frequency PI controller. The proposed controller consists of three single-phase IGBT (Insulated Gate Bipolar Junction Transistor) based VSC, which are connected to each phase of the IAG through three single phase transformers and a battery at their DC link. The controller has the capability of controlling reactive and active powers to regulate the magnitude and frequency of the generated voltage, harmonic elimination, load balancing and neutral current compensation. The proposed isolated system is modeled and simulated in MATLAB using Simulink and PSB (Power System Block-set) toolboxes to verify the performance of the controller.