• 제목/요약/키워드: Voltage phase

검색결과 4,303건 처리시간 0.031초

정상분 전압 관측기를 이용한 불평형 3상 전원의 PLL (PLL for Unbalanced Three-Phase Utility Voltage using Positive Sequence Voltage Observer)

  • 김형수;최종우
    • 전력전자학회논문지
    • /
    • 제13권2호
    • /
    • pp.145-151
    • /
    • 2008
  • 본 논문에서는 계통 전압이 불평형인 경우에 정확한 위상각을 검출할 수 있는 정상분 전압 관측기를 이용한 PLL(Phase Locked Loop) 방법을 제안한다. 제안된 PLL 방법은 기존의 전역 통과 필터(APF, All Pass Filter)를 이용하여 불평형 전원전압으로부터 정상분 전압을 구하는 것과는 달리 전차원 상태관측기를 사용함으로써 불평형사고 발생 시 추정위상각의 과도상태 응답특성을 개선하였다. 기존의 정상분 전압 추출 PLL 방법과 본 논문에서 제안된 PLL 방법의 성능을 비교하기 위해, 전원단 전압에 불평형 사고 발생시 위상각을 검출하는 실험을 하였고, 이를 통해 기존의 전역 통과 필터를 이용한 정상분 전압 추출 PLL 방법보다 제안된 전차원 상태관측기를 이용한 정상분 전압 추출 PLL 방법의 과도상태 응답특성이 개선됨을 입증하였다.

3상 위상제어 정류기를 위한 DVR의 반응시간 최적화 (Response Time Optimization of DVR for 3-Phase Phase-Controlled Rectifier)

  • 박철우;정수경;류지열;이대섭
    • 제어로봇시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.195-201
    • /
    • 2013
  • In this paper, we present optimization technique for the response time of DVR (Dynamic Voltage Restorer) and the possible compensation range of voltage dip by the DVR system. To protect 3-phase phase-controlled rectifier from voltage dip, DVR system needs to have optimum response time as an important design factor. Although the fast response time of DVR ensures wider range of voltage dip, DVR controller has so high cost and poor stability. This paper proposes DVR system with optimum response time required for certain intensity of voltage dips and good stability to support possible compensation range of voltage dip. Proposed technique showed optimum response time and good stability for overall system. We believe that proposed technique is reliable and useful in DVR design.

PWM 인버터 시스템의 영상전압 억제에 관한 연구 (A Study on the Rejection of Zero Phase Voltage of a PWM Inverter System)

  • 박찬근;이성근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.335-339
    • /
    • 1999
  • 본 논문에서는 고속의 전력용 반도체를 이용하여 직류-교류 전력변환을 행하는 전압형 PWM 인버터에서 발생하는 영상전압을 억제할 수 있는 회로시스템을 제안한다. 제안된 시스템은 영상전압과 크기가 같고 역위상의 전압을 발생하여 이를 영상전압 억제용 변압기를 거쳐 인버터 출력에 중첩함으로써 부하에 인가되는 영상전압을 억제하였다. 이로 인해 영상전압분에 의해 접지선으로 흐르는 고조파 누설전류의 감소효과를 가져왔고, 이에 대한 타당성을 시뮬레이션을 통하여 확인하였다.

  • PDF

Fast Detection Algorithm for Voltage Sags and Swells Based on Delta Square Operation for a Single-Phase Inverter System

  • Lee, Woo-Cheol;Sung, Kook-Nam;Lee, Taeck-Kie
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.157-166
    • /
    • 2016
  • In this paper, a new sag and peak voltage detector is proposed for a single-phase inverter using delta square operation. The conventional sag detector is from a single-phase digital phase-locked loop (DPLL) that is based on d-q transformations using an all-pass filter (APF). The d-q transformation is typically used in the three-phase coordinate system. The APF generates a virtual q-axis voltage component with a 90° phase delay, but this virtual phase cannot reflect a sudden change in the grid voltage at the instant the voltage sag occurs. As a result, the peak value is drastically distorted, and it settles down slowly. A modified APF generates the virtual q-axis voltage component from the difference between the current and the previous values of the d-axis voltage component in the stationary reference frame. However, the modified APF cannot detect the voltage sag and peak value when the sag occurs around the zero crossing points such as 0° and 180°, because the difference voltage is not sufficient to detect the voltage sag. The proposed algorithm detects the sag voltage through all regions including the zero crossing voltage. Moreover, the exact voltage drop can be acquired by calculating the q-axis component that is proportional to the d-axis component. To verify the feasibility of the proposed system, the conventional and proposed methods are compared using simulations and experimental results.

A Current Compensating Scheme for Improving Phase Noise Characteristic in Phase Locked Loop

  • Han, Dae Hyun
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.139-142
    • /
    • 2018
  • This work presents a novel architecture of phase locked loop (PLL) with the current compensating scheme to improve phase noise characteristic. The proposed PLL has two charge pumps (CP), main-CP (MCP) and sub-CP (SCP). The smaller SCP current with same time duration but opposite direction of UP/DN MCP current is injected to the loop filter (LF). It suppresses the voltage fluctuation of LF. The PLL has a novel voltage controlled oscillator (VCO) consisting of a voltage controlled resistor (VCR) and the three-stage ring oscillator with latch type delay cells. The VCR linearly converts voltage into current, and the latch type delay cell has short active on-time of transistors. As a result, it improves phase noise characteristic. The proposed PLL has been fabricated with $0.35{\mu}m$ 3.3 V CMOS process. Measured phase noise at 1 MHz offset is -103 dBc/Hz resulting in 3 dBc/Hz phase noise improvement compared to the conventional PLL.

3상 전압인가형 중첩방전 오존발생기의 오존생성 상승효과 (Ozone Generation Synergy Effects of Three-Phase Voltage Apply Type Superposed Discharge Ozonizer)

  • 이병준;이상근;송현직;김영훈;박원주;이광식
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권8호
    • /
    • pp.468-476
    • /
    • 2000
  • Nowadays, ozone is mainly utilized for water treatment and home equipments. Although the demand for ozone is increasing, the ozone yield of silent discharge type ozonizer is low. Therefore, it is expected to improve the energy efficiency and ozone yield of an ozonizer. In this paper, a new ozone generation system is proposed. The 60[Hz] three-phase voltage is applied to three-phase superposed discharge type ozonizer(3PSDO) which has three electrodes(central, internal and external electrodes). There is no discharge pause time when three-phase voltage is applied due to 120-degree phase difference of applied voltage. The synergy effect of the three-phase superposed discharge type ozonizer is investigated by comparing with the three sort of single-phase discharge type ozonizer(1PDO). So, three-phase superposed discharge type ozonizer is able to obtain high ozone yield, and optimize discharge space, because this can increase the discharge power at low applied voltage.

  • PDF

비대칭 전압 불평형에 의한 유도전동기의 동작특성 해석 (Analysis for Operation Characteristics of Induction Motor at Asymmetric Voltage Unbalance)

  • 김종겸;박영진;이은웅;김일중;손홍관;정종호;이동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.791-793
    • /
    • 2004
  • Voltage unbalance is generated by the load and impedance mismatching at the 3-phase 4-wire system of customer load. Voltage unbalance factor can be changed by the voltage amplitude or phase angle, and both. A small voltage unbalance is connected to high current unbalance. If the voltage unbalance is generated at the joint system of 1-phase and 3-phase load, Induction motor due to the current unbalance increase is generated loss, noise and torque ripple. In order to analyze the effect by voltage unbalance, it is necessary to the consideration of amplitude and phase angle. In this paper, We analyzed the effects that induction motor is affected by asymmetric voltage unbalance

  • PDF

상전압 및 선간전압에 대한 불평형율 (Voltage Unbalance Factor for Phase and Line Voltage)

  • 김종겸;박영진;이동주;이종한;이은웅
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.74-77
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetrical components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved at the 3-phase 4-wire system by the unbalanced load, by the conventional analytical method, line and phase voltage unbalance leads to different results due to zero-sequence component. This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

  • PDF

주택용 단상 ESS-PCS의 전압손실과 직류링크 맥동을 고려한 직류측 배터리 사이즈 및 제어기 설계 (Design of DC Battery Size & Controller for Household Single-Phase ESS-PCS Considering Voltage Drop and DC Link Voltage Ripple)

  • 김용중;이진성;김효성
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.94-100
    • /
    • 2018
  • Generally, in a single-phase energy storage system (ESS) for households, AC ripple component with twice the fundamental frequency exists inevitably in the DC link voltage of single-phase PCS. In the grid-connected mode of a single-phase inverter, the AC ripple component in the DC link voltage causes low-order harmonics on grid-side current that deteriorates power quality on an AC grid. In this work, a control system adopting a feedforward controller is established to eliminate the AC ripple interference on the DC link side. Optimal battery nominal voltage design method is also proposed by considering the voltage loss and AC ripple voltage on DC link side in a single-phase ESS. Finally, the control system and battery nominal voltage design method are verified through simulations and experiments.

대칭분 전압 단위 벡터를 이용한 송전선로 보호용 고장상 선택 알고리즘 (Fault Phase Selection Algorithm using Unit Vector of Sequence Voltages for Transmission Line Protection)

  • 이명수;이재규;김수남;유석구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권9호
    • /
    • pp.460-466
    • /
    • 2002
  • A reliable fault phase selection algorithm plays a very important role in transmission line protection, Particularly in Extra High Voltage (EHV) networks. The conventional fault phase selection algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to pick out only fault current since we can not know when a fault occurs and select the fault phase in weak-infeed conditions that dominate zero-sequence current in phase current. The proposed algorithm can select the accurately fault phase using the sum of unit vectors which are calculated by positive-sequence voltage and negative-sequence voltage.