• 제목/요약/키워드: Voltage management

검색결과 493건 처리시간 0.026초

가변 전압 프로세서를 사용하는 실시간 시스템에서 소비 전력감소를 위한 전압조절 (Voltage Scaling for Reduced Energy Consumption in Real-Time Systems Using Variable Voltage Processor)

  • 이용준;김용석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.438-440
    • /
    • 2004
  • Energy consumption has become an increasingly important consideration in designing real-time embedded systems. In this paper, we propose a voltage scaling method to reduce energy consumption in fixed priority real-time systems using variable voltage processors. The Hyperperiod of tasks is divided into dimains. The most suitable voltage of each domain is determined off-line and stored in a table. During task execution, the voltage of processor is adjusted according to the information of the table. A simulation result shows that the proposed method can reduce 80% of power consumption in comparison to no power management. The difference to the optimal EDF based method is only 5%.

  • PDF

고전압 착자기에서의 누전 사고 방지를 위한 광통신 제어시스템의 도입 방안과 경제성 분석 (Economic Analysis of Optical Communication Control System in High Voltage Magnetizer)

  • 배영우;김우주;홍준석
    • Journal of Information Technology Applications and Management
    • /
    • 제26권6호
    • /
    • pp.103-117
    • /
    • 2019
  • Demand for high power motors is rapidly increasing as the 4th industry and convergence technology has recently emerged. In order to produce high-strength permanent magnets, the magnets used for magnetization have been increased from DC 300V in the 1970s to DC 2.5kV in the 2010s, Up to DC 10kV in the 2030s, It is expected that higher voltage will be used to magnetize. However, in the case of a magnetizer using an existing electric signal control device, it is necessary to use a control device with a high-voltage insulation function in case a high voltage used for magnetization is leaked to the control device. If a short circuit accident occurs, the controller must be shut down and serious problems such as excessive repair costs arise. In this study, a control system adopting optical communication method instead of electric signal control method is proposed to prevent leakage currents in high-voltage magnetizer. We design a transmitter(Tx) and a receiver(Rx) device for the optical communication control device and implemented a prototype connecting the optical cable. In order to demonstrate the utility of high-voltage magnetizer using the optical communication control device, we analyzed the initial cost and the yearly cost for the years to analyze the net present value. As a result, In the case of the low-voltage magnetizer, the electric signal control method cost less, As the operating voltage of the magnetizer becomes higher. It is confirmed that it takes less cost when the optical communication control device is used.

일반용 저압전기설비의 안전등급제 도입에 관한 연구 (A Study on Improvement of Safety Management of Low Voltage Electrical Equiment)

  • 한재필;최용성
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.598-602
    • /
    • 2023
  • With the purpose of instilling an awareness of the safety of users of electrical equipment and inducing voluntary facility improvement through the safety rating system for general low voltage electrical equipment, simulation and field application of the safety rating of general low voltage electrical equipment were conducted. For the introduction and application of the safety rating system for general low-voltage electrical equipment, data related to domestic safety was investigated and analyzed, cases of introduction in other fields were reviewed, and for design, the 4M risk assessment method of the Korea Occupational Safety and Health Agency and the cases of safety index development in Korea were analyzed and standardized. Safety rating system simulations were conducted for general low-voltage electrical equipment, and problem improvement measures were prepared by analyzing the results through on-site verification and simulation applied to the initial design. Design standards for the introduction of the safety rating system for general low-voltage electrical equipment were prepared, and 394 youth training facilities were applied to the field to see if the design standards were practically applicable to the field. With the application of the safety rating system for low-voltage electrical equipment for general use, youth training facilities that had been classified as 'appropriate' were able to induce an upgrade to a higher level through voluntary facility improvement according to the application of grades (A to E). As a result of inducing voluntary repair projects based on the results of the 1st and 2nd inspection of youth training facilities, it was confirmed that 86 facilities received grade A, 225 facilities received grade B, and only 311 facilities received grade A to B out of a total of 394 facilities, and there was no grade E.

전력산업 경쟁체제에서 무효전력/전압 제어 서비스의 가격책정 방법 (A Method to Calculate a Service Charge for Reactive Power/Voltage Control under Competition of Power Utilities)

  • 김용길;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.85-88
    • /
    • 2000
  • This paper proposes a methodology to compute the servicing price of reactive power management and voltage control in competitive electrical power market. Compound method is proposed and its result is proved by a sample test. The method can be useful in providing additional insight into power system operation and can be used to determine tariffs of reactive power management service.

  • PDF

Task-Level Dynamic Voltage Scaling for Embedded System Design: Recent Theoretical Results

  • Kim, Tae-Whan
    • Journal of Computing Science and Engineering
    • /
    • 제4권3호
    • /
    • pp.189-206
    • /
    • 2010
  • It is generally accepted that dynamic voltage scaling (DVS) is one of the most effective techniques of energy minimization for real-time applications in embedded system design. The effectiveness comes from the fact that the amount of energy consumption is quadractically proportional to the voltage applied to the processor. The penalty is the execution delay, which is linearly and inversely proportional to the voltage. According to the granularity of tasks to which voltage scaling is applied, the DVS problem is divided into two subproblems: inter-task DVS problem, in which the determination of the voltage is carried out on a task-by-task basis and the voltage assigned to the task is unchanged during the whole execution of the task, and intra-task DVS problem, in which the operating voltage of a task is dynamically adjusted according to the execution behavior to reflect the changes of the required number of cycles to finish the task before the deadline. Frequent voltage transitions may cause an adverse effect on energy minimization due to the increase of the overhead of transition time and energy. In addition, DVS needs to be carefully applied so that the dynamically varying chip temperature should not exceed a certain threshold because a drastic increase of chip temperature is highly likely to cause system function failure. This paper reviews representative works on the theoretical solutions to DVS problems regarding inter-task DVS, intra-task DVS, voltage transition, and thermal-aware DVS.

Pilot Bus의 정보를 이용한 효율적인 지역별 전압제어 (Effective Localized-Voltage Control Scheme using the Information from Pilot Bus)

  • 송성환;윤용태;문승일;이호철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권12호
    • /
    • pp.505-513
    • /
    • 2006
  • One of the major reasons for recent blackout, like August 14, 2003 blackout in the US and Canada has been insufficient voltage/reactive power support. For the stable reactive power management, a new approach for the voltage monitoring and control structure is required in the market environment. This paper proposes the effective localized-voltage control scheme using the information from pilot buses at each zone. In this paper, the steady state voltage monitoring and control (SSVMC) is adopted and illustrated for the voltage control scheme during steady state because it is thought as the systemic algorithm to explain voltage profile phenomenon before and after contingencies. And the concept of electrical distance is applied to simultaneously achieve both clustering the voltage control zone, and selecting the pilot bus as the representative node at each control zone. Applying SSVMC based on the structure with clustering and pilot bus enables system operators to monitor and understand the system condition much more easily, to monitor and control the voltage in real-time more manageably, and to respond quickly to a disturbance. The proposed voltage control scheme has been tested on the IEEE 14-bus system with the numerical analysis to examine the system reliability and structure efficiency.

A Novel Method for Compensating Phase Voltage Based on Online Calculating Compensation Time

  • Wang, Mingyu;Wang, Dafang;Zhou, Chuanwei;Liang, Xiu;Dong, Guanglin
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.333-343
    • /
    • 2019
  • Dead time and the nonideal characteristics of components all lead to phase voltage distortions. In order to eliminate the harmful effects caused by distortion, numerous methods have been proposed. The efficacy of a method mainly depends on two factors, the compensation voltage amplitude and the phase current polarity. Theoretical derivations and experiments are given to explain that both of these key factors can be deduced from the compensation time, which is defined as the error time between the ideal phase voltage duration and the actual phase voltage duration in one Pulse Width Modulation (PWM) period. Based on this regularity, a novel method for compensating phase voltage has been proposed. A simple circuit is constructed to realize the real-time feedback of the phase voltage. Utilizing the actual phase voltage, the compensation time is calculated online. Then the compensation voltage is derived. Simulation and experimental results show the feasibility and effectivity of the proposed method. They also show that the error voltage is decreased and that the waveform is improved.

The Neural-Network Approach to Recognize Defect Pattern in LED Manufacturing

  • Chen, Wen-Chin;Tsai, Chih-Hung;Hsu, Shou-Wen
    • International Journal of Quality Innovation
    • /
    • 제7권3호
    • /
    • pp.58-69
    • /
    • 2006
  • This paper presents neural network-based recognition system for automatic light emitting diode (LED) inspection. The back-propagation neural network (BPNN) is proposed and tested. The current-voltage (I-V) characteristic data of LED from the inspection process is used for the network training and testing. This study selects 300 random samples as network training and employs 100 samples as network testing. The experimental results show that if the classification work is done well, the accuracy of recognition is 100%, and the testing speed of the proposed recognition system is almost one half faster than the traditional inspection system does. The proposed neural-network approach is successfully demonstrated by real data sets and can be effectively developed as a recognition system for a practical application purpose.

유비쿼터스 기반의 주택 자동화용 디지털 분전반 개발 (Development of the Ubiquitous-based Intelligent Digital Switchgear Panel for Home Automation)

  • 고윤석;김호용;윤석열
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.741-747
    • /
    • 2008
  • This paper proposes a new concept of IDSP(Intelligent Digital Switchgear Panel) which can solve the problem of the safety, the reliability and the convenience to correspond to the requirement of the general electric customer or electric power company under the ubiquitous-based home automation environments. By analyzing their requirement functions, a 32-bit micro processor is adopted as main controller to support the designed functions efficiently. The DSP-based single phase power management device is utilized to collect the electric power information and the ethernet convertor to communicate through internet among the IDSPs and the remote computer system. In the proposed IDSP, the several functions are implemented such as the earth leakage level display and waveform transmission, the electric fee display, the voltage management, the load management and the load control function. Finally, the prototype of the IDSP is made experimently based on the designed results, and then the effectiveness is verified by testing its basic functions.