• Title/Summary/Keyword: Voltage losses

Search Result 657, Processing Time 0.023 seconds

Study on the Stability Evaluation of the High-Tc Superconducting Power Cable (고온초전도 전력케이블의 안정도 평가를 위한 교류손실에 관한 연구)

  • Bae, J.H.;Choi, S.J.;Lee, S.J.;Cho, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1236-1240
    • /
    • 2007
  • In order to evaluate if the high-Tc superconducting(HTS) power cable is operating stably, the characteristics of the HTS power cable should be found out. The properties of HTS tapes by measuring the voltage with respect to the current can be archived. But, the HTS power cable is different from the case of HTS tapes. This method is invalid because of the electromagnetic fields caused by other HTS tapes. In this paper, the stability evaluation of the HTS cable was performed by the following procedure. First, the voltage-current characteristics of HTS tape were measured and the electromagnetic field distributions of the HTS power cable with the external magnetic field were analyzed. Second, the losses of the HTS power cable were calculated using the result of the measurement and the analysis. Finally, the stable operation of the HTS power cable was evaluated on the basis of the losses of the superconducting cable.

Aging Analysis and Reconductoring of Overhead Conductors for Radial Distribution Systems Using Genetic Algorithm

  • Legha, Mahdi Mozaffari;Mohammadi, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2042-2048
    • /
    • 2014
  • In medium voltage electrical distribution networks, reforming the loss reduction is important, and in line with this, the issue of system engineering and use of proper equipment Expansion of distribution systems results in higher system losses and poor voltage regulation. Therefore, an efficient and effective distribution system has become more important. So, proper selection of conductors in the distribution system is crucial as it determines the current density and the resistance of the line. Evaluation of aging conductors for losses and costs imposed in addition to the careful planning of technical and economic networks can be identified in the network design. In this paper the use of imperialist competitive algorithm; genetic algorithm; is proposed to optimal branch conductor selection and reconstruction in radial distribution systems planning. The objective is to minimize the overall cost of annual energy losses and depreciation on the cost of conductors to improve productivity given the maximum current carrying capacity and acceptable voltage levels. Simulations are carried out on 69-bus radial distribution network using genetic algorithm approaches to show the accuracy as well as the efficiency of the proposed solution technique.

A High Efficiency Two-stage Inverter for Photovoltaic Grid-connected Generation Systems

  • Liu, Jiang;Cheng, Shanmei;Shen, Anwen
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.200-211
    • /
    • 2017
  • Conventional boost-full-bridge and boost-hybrid-bridge two-stage inverters are widely applied in order to adapt to the wide dc input voltage range of photovoltaic arrays. However, the efficiency of the conventional topology is not fully optimized because additional switching losses are generated in the voltage conversion so that the input voltage rises and then falls. Moreover, the electrolytic capacitors in a dc-link lead to a larger volume combined with increases in both weight and cost. This paper proposes a higher efficiency inverter with time-sharing synchronous modulation. The energy transmission paths, wheeling branches and switching losses for the high-frequency switches are optimized so that the overall efficiency is greatly improved. In this paper, a contrastive analysis of the component losses for the conventional and proposed inverter topologies is carried out in MATLAB. Finally, the high-efficiency under different switching frequencies and different input voltages is verified by a 3 kW prototype.

A Study on the Analysis of the Inductive Reactance Losses of a Superconducting Current Generator (초전도 전류 발전기의 유도리액턴스 손실에 관항 연구)

  • Ko, Tae-Kuk
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1317-1320
    • /
    • 1990
  • The inductive reactance losses of a superconducting current generator built at Case Western Reserve University has been analyzed. The calculations of the field in the spot make it possible to estimate the spot inductance as well as the filament inductance on the foil. It is shown that magnetic energy lost in switching the current is mainly due to the amplitude of the fluctuation in voltage associated with the inductive reactance losses of a superconducting current generator.

  • PDF

Soft Switching Forward Converter Using Non-Dissipative Snubber (무손실 스너버 적용 소프트 스위칭 Forward 컨버터)

  • 김은수;김태진;최해영;조기연;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.256-260
    • /
    • 1997
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved soft switching forward converter is proposed. The proposed converter is constructed by using non-dissipative snubbers in parallel with the main switch and output diode of the conventional forward converter. Due to the use of the non-dissipative snubbers in the primary and secondary, the proposed converter achieves zero-voltage and zero-current switching for all switching devices without switching losses and output diode recovery losses. The complete operating principles, theoritical analysis, experimental results will be presented.

  • PDF

High Efficiency PFC AC/DC Converter with Synchronous Rectifier (동기 정류기를 이용한 고효율 역률보상형 AC/DC 컨버터)

  • 박한웅
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.266-269
    • /
    • 2000
  • This paper presents a novel single-stage unity power factor converter which features the reduced switching losses by zero-voltage switching and zero-current switching (ZVZCS). Hence the turn-on and turn-off losses of switches are sufficiently reduced. And the reduced conduction losses are achieved by the elimination of one leg of front-end rectifier. And low on-resistance MOSFETs (Synchronous Rectifier) are used in the rectifier at the secondary side of high frequency transformer instead of diodes. Theoretical analysis simulated results of a AC to DC 150W(5V, 30A) converter are presented.

  • PDF

A Technique for Reducing Diode Reverse-Recovery-Related Losses in Boost converters (다이오드 역방향 회복에 의한 손실을 감소시킨 부스트 컨버터)

  • Song, Ki-Seung;Lee, Jong-Kue;Lee, Sung-Paik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1857-1859
    • /
    • 1998
  • This paper proposes a circuit technique that reduces losses cauased by reverse-recovery characteristics of the diode in converters. In high voltage, high power, Reverse recovery characteristics of the diode gives large stresses to switching devices. To solve the problem, we propose a circuit with active snubber between diode and switch. By controling di/dt rate of thr diode, the proposed technique reduces the losses and the stresses of switching devices.

  • PDF

Voltage-Fed Push-Pull PWM Converter Featuring Wide ZVS Range and Low Circulating Loss with Simple Auxiliary Circuit

  • Ye, Manyuan;Song, Pinggang;Li, Song;Xiao, Yunhuang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.965-974
    • /
    • 2018
  • A new zero-voltage-switching (ZVS) push-pull pulse-width modulation (PWM) converter is proposed in this paper. The wide ZVS condition for all of the switches is obtained by utilizing the energy stored in the output inductor and magnetizing inductance. As a result, the switching losses can be dramatically reduced. A simple auxiliary circuit including two small diodes and one capacitor is added at the secondary side of a high frequency (HF) transformer to reset the primary current during the circulating stage and to clamp the voltage spike across the rectifier diodes, which enables the use of low-voltage and low-cost diodes to reduce the conducting and reverse recovery losses. In addition, there are no active devices or resistors in the auxiliary circuit, which can be realized easily. A detailed steady operation analysis, characteristics, design considerations, experimental results and a loss breakdown are presented for the proposed converter. A 500 W prototype has been constructed to verify the effectiveness of the proposed concept.

Applicable Method for Average Switching Loss Calculation in Power Electronic Converters

  • Hasari, Seyyed Abbas Saremi;Salemnia, Ahmad;Hamzeh, Mohsen
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1097-1108
    • /
    • 2017
  • Accurate calculation of the conduction and switching losses of a power electronic converter is required to achieve the efficiency of the converter. Such calculation is also useful for computing the junction temperature of the switches. A few models have been developed in the articles for calculating the switching energy losses during switching transitions for the given values of switched voltage and switched current. In this study, these models are comprehensively reviewed and investigated for the first time for ease of comparison among them. These models are used for calculating the average amount of switching power losses. However, some points and details should be considered in utilizing these models when switched current or switched voltage presents time-variant and alternative quantity. Therefore, an applicable technique is proposed in details to use these models under the above-mentioned conditions. A proper switching loss model and the presented technique are used to establish a new and fast method for obtaining the average switching power losses in any type of power electronic converters. The accuracy of the proposed method is evaluated by comprehensive simulation studies and experimental results.

A Comparative Analysis of Switching Losses of High Voltage IGBTs in Solid State Transformer Applications (반도체 변압기를 위한 고압 IGBT의 스위칭 손실 특성 비교)

  • Yoon, Chun gi;Cho, Younghoon;Kim, Ho-Sung;Baek, Ju Won;Cho, Youngpyo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.107-108
    • /
    • 2016
  • Solid State Transformer(SST) has been recently regarded as a good alternative to conventional low frequency transformer. SST is consist of several high voltage power stage, so it is important to select optimal semiconductor switches for specification. This paper presents optimal IGBT switches for low switching losses using analyzing switching characteristics of several high voltage IGBT switches. Double Pulse Tester(DPT) experiment is used to verify characteristics of this IGBT switches.

  • PDF