• Title/Summary/Keyword: Voltage limit

Search Result 495, Processing Time 0.026 seconds

A Study on the Theoretical Analysis of Human Body Approximation to Special High Voltage Eletric Lines (특별고압 전선로에 대한 인체접근한계의 이론적연구)

  • 김상렬;김찬오;이재인
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.3
    • /
    • pp.44-50
    • /
    • 1990
  • This study is conducted to examine the theoretical background of characteristics for electric shock encountered in special high-voltage electric lines among the accidents of electric shock, and to calculate applied current to human body and field strength over the head by means of numerical anaysis through FEM(Finite Element Method), and to make clear the hazard level to the human body, and to establish the approach limit distance of human body to the electric lines, which could be applied to the safety standard while working in the vicinity of special high-voltage electric lines.

  • PDF

Performance of Switched Reluctance Motor driven by Variable Voltage Source (VVS구동 스위치드 릴럭턴스 전동기의 동작특성)

  • An, Y.J.;Ahn, J.W.;Joe, C.J.;Hwang, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.169-171
    • /
    • 1994
  • This paper suggests a SRM control scheme driven by a variable voltage source. This scheme shows that it is unnecessary to introduce a switch to control dc-link voltage and to limit a phase current. And its vary easy to build-up flat-topped phase current which is advantageous to the high torque and efficiency drive of a SRM. Experimental tests are shown to verify this suggestion.

  • PDF

A Study on the Modeling of Step Voltage Regulator and Energy Storage System in Distribution System Using the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 배전계통의 선로전압조정장치와 전지전력저장장치의 모델링에 관한 연구)

  • Kim, Byungki;Kim, Giyoung;Lee, Jukwang;Choi, Sungsik;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1355-1363
    • /
    • 2015
  • In order to maintain customer voltage within allowable limit($220{\pm}13V$), tap operation of SVR(step voltage regulator) installed in primary feeder could be carried out according to the scheduled delay time(30 sec) of SVR. However, the compensation of BESS(battery energy storage system) is being required because the customer voltages during the delay time of SVR have a difficultly to maintain within allowable limit when PV system is interconnected with primary feeder. Therefore, this paper presents modeling of SVR to regulate voltage with the LDC(line drop compensation) method and modeling of BESS to control active and reactive power bi-directionally. And also, this paper proposes the coordination control modeling between BESS and SVR in order to overcome voltage problems in distribution system. From the simulation results based on the modeling with the PSCAD/EMTDC, it is confirmed that proposed modeling is practical tool for voltage regulation analysis in distribution system.

Switched-voltage control of electrostatic suspension system

  • Woo, Shao-Ju;Jeon, Jong-Up;Higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.401-404
    • /
    • 1996
  • A new method for the electrostatic suspension of disk-shaped objects is proposed which is based on a switched-voltage control scheme. It operates according to a relay feedback control and deploys only a single high-voltage power supply capable of delivering a dc voltage of positive and/or negative polarity. In addition to the unique feature that no high-voltage amplifiers are needed, this method provides a remarkable system simplification relative to conventional methods. It is shown that despite the inherent limit cycle property of relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping. In this paper, the functional principle of the switched voltage control scheme, numerical analysis, stator electrode design, and a nonlinear dynamic model of the suspension system are described. Experimental results will be presented for a 4-inch silicon wafer that clearly reveal the capability of the proposed control structure to suspend the wafer stably at an airgap length of 50 .mu.m.

  • PDF

An Imrpoved Gate Control Scheme for Overvoltage Clamping under IGBT Series Connection (IGBT 직렬 연결시 과전압 제한을 위한 게이트 구동기법)

  • Kim, Wan-Jong;Choe, Chang-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.83-88
    • /
    • 1999
  • Series connection of power semiconductor devices is selected in high voltage and high power applications. It is important to prevent the overvoltage from being induced across a device above ratings by the proper voltage balancing in the field of IGBT series connection. In addition, the overvoltage induced by a stray inductance has to be limited in the high power circuit. This paper proposes a new gate control scheme which can balance the voltage properly and limit the overshoot by controlling the slope of collector voltage under the turn-off transient in the series connected IGBTs. The proposed gate control scheme changes the slope of collector voltage by sensing the collector voltage and controlling the gate signal actively. The new series connected IGBT gate driver is made and its validity is verified by the experimental results for series connected IGBT circuit.

  • PDF

A study on capacitive transformer (용량성배전변압기에 관한 연구)

  • Sung Won Rhee
    • 전기의세계
    • /
    • v.18 no.2
    • /
    • pp.7-14
    • /
    • 1969
  • From the first customer located right at the substation to the last customer at the end of the line, voltage must be held within close limits, so the voltage regulation is more important than the thermal limit. On a typical distribution system during the peak load period, the voltage drop may be serious enough to cause unsatisfactory operation of home appliances in the residential area, and present many problems to manufacturing industries, where the voltage must be maintained within close limits to insure smooth operation. Among all the factors contributing to voltage drop in the distribution system, the voltage drop in the distribution transformer may account for 30% of this figure. If we can eliminate this factor, the power companies can provide better quality electricity to more customers with the existing distribution facilities, thus saving on initial investment costs. Taking all these problems into consideration, the author undertook the design of a capacitive transformer which would give zero voltage drop at rated load and at 80% lagging power factor while incorporating overload features to withstand 400% overload for at least 100 seconds. The following are the results obtained through design, manufacture and test of an initial experimental transformer built with these specific purposes.

  • PDF

The Voltage Compensation Strategy of Distribution System Using the Ubiquitous-based Distributed Voltage Control Method (유비쿼터스 기반 분산 자율 전압 제어 방식에 의한 배전계통 전압 보상 전략)

  • Ko, Yun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1696-1702
    • /
    • 2008
  • This paper proposes a voltage compensation device direct control strategy to realize the distributed, autonomous voltage control of the distribution system, which based on voltage data collected from customers of the remote site under the ubiquitous-based distribution system. In the proposed method, The ULTC and the SVR(Step Voltage Regulator)s compensate autonomously the voltage for self-compensation area based on the voltage data furnished from the ubiquitous device of customers. Also, the SVRs overcome the limit of single-operation of ULTC by the interlocking operation with the ULTC and enhance the voltage compensation capability for the customer. In particular, an optimization design method and a fuzzy design method are compared to determine the effective control method of the voltage compensator under the ubiquitous-based on-line operation environments. In fuzzy method, the tap of voltage compensator is defined as output member. Finally, the proposed two methods are implemented in Visual C++ MFC, the effectiveness is proved by simulation based on the worst virtual voltage data. Also, an optimal voltage compensation strategy is determined under on-line environments based on analyzed results.

An Integrated Compensation Algorithm for PCC Voltage Fluctuation and Unbalance with Variable Limit of Positive and Negative Sequence Currents

  • Im, Ji-Hoon;Song, Seung-Ho;Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.751-760
    • /
    • 2017
  • This paper proposes a point of common coupling (PCC) voltage compensation algorithm using a current limitation strategy for use in distributed generation (DG). The proposed strategy maintains the PCC voltage by prioritizing currents when an output current reference is larger than the current capacity of the power condition system (PCS) of the DG. With this strategy, the DG outputs the active current, reactive current, and the negative sequence current. The DG uses the reactive current for maintaining the PCC voltage within a normal range; the negative sequence current is used for reducing the PCC voltage unbalance. The proposed method was verified using PSIM simulation and experimental results.

Design of Simple Neuro-controller for Global Transient Control and Voltage Regulation of Power Systems

  • Jalili-Kharaajoo Mahdi;Mohammadi-Milasi Rasoul
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.302-307
    • /
    • 2005
  • A novel neuro controller based simple neuro-structure with modified error function is introduced in this paper. This controller consists of two independent controllers, known as the voltage regulator and the angular controller. The voltage regulator is used to modify terminal voltage for the purpose of tracking a reference voltage. The angular controller is utilized to guarantee the stability of the system. In this structure each neuron uses a linear hard limit activation function that depends on the controlled variable and its derivatives. There is no need for parameter identification or any off-line training data. Two proposed controllers are merged by a smooth switch to build a complete controller. The effectiveness of the proposed novel control action is demonstrated through some computer simulations on a Single-Machine Infinite-Bus (SMIB) power system.

A Study on the Improved Ignition Limit with Resistor for Propan-air Mixture Gas (저항을 이용한 프로판-공기 혼합가스의 점화한계 개선에 관한 연구)

  • 이춘하;오종용;옥경재;지승욱;이광식;심광렬
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • This paper describes the minimum ignition limits for propane-air 5.25 Vol.% mixture gases in low voltage inductive circiuts. The improved effects on the ignition limit are studied by parallel safety components(resistors) for propane-air 5.25 Vol.% mixture gas in low voltage inductive circuits. The experimental devices used in this test are the IEC type spark ignition test apparatus. The minimum ignition limits are controlled by the values of current in inductive circuit. Energy supplied from electric source is first accumulated at the inductance, it's extra energy is working as ignition source of the explosive gas. The improved effects on the ignition limit are respectively obtained as the maximum rising rate of 330% by composing parallel circuits between inductance and resistor as compared with disconnecting inductance with the safety components. The more values of inductance increase the higher improved effects of ignition limit rise. The less values of resistor the higher improved effects of ignition limit rise. It is considered that the result can be used for not only data for researches and development of intrinsically safe explosion-proof machines which are applied equipment and detectors used in dangerous areas but also for datum for its equipment tests.