• Title/Summary/Keyword: Voltage instability

Search Result 195, Processing Time 0.036 seconds

A Study on Voltage Collapse Mechanism using Equivalent Mechanical Model

  • Kim, Do-Hyung;Ryu, Heon-Su;Lee, Jong-Gi;Moon, Young-Hyun
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.6-14
    • /
    • 2002
  • In this paper, an EMM(Equivalent Mechanical Model) Is developed to explain the voltage collapse mechanism by reflecting the effects of reactive powers. The proposed EMM exactly represents the voltage instability mechanism described by the system equations. By the use of the EMM model, the voltage collapse mechanism has been illustrated by showing the exactness of the results. The stable region has been investigated with a reactive-power-controlled two-bus system, which shows that special alerts are required when the system operates with leading power factor. It is also discussed a system transform technique to eliminate the resistance component of the Thevenin equivalent impedance for practical applications. Finally, the results adopting the proposed method fur sample systems which were transformed are listed

A Design of Load Shedding System Considering both Angular Stability and Voltage Stability in Industrial Power System (산업용 전력계통의 주파수 안정도와 전압 안정도를 고려한 부하차단 설계)

  • Kim, Bong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.103-109
    • /
    • 2004
  • This paper has presented, taking an example of a gas separation plant, dynamic analysis on frequency decline caused by the over-loading at the generator and the knee point causing voltage instability due to reactive power required by re-acceleration of large induction motors, resulting in phenomena of failure in the conventional frequency load shedding. In order to resolve the voltage instability problem, a design of load shedding system employing under-voltage relays has been proposed to the industrial power system containing large induction motors in addition to the conventional load shedding employing frequency relays. For the purpose of dynamic analysis, models of gas turbine and governor, synchronous generator, brushless exciter, and induction motor are introduced.

Dynamics Transition of Electroconvective Instability Depending on Confinement Effect (공간 제약 효과에 따른 전기와류 불안정성의 동역학 전이)

  • Lee, Seungha;Hyun, Cheol Heon;Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.626-631
    • /
    • 2021
  • One of the nonlinear electrokinetic phenomena around ion exchange membrane is electroconvective instability which can be found in various electrokinetic applications such as electrodialysis, electrochemical battery, microfluidic analysis platform, etc. Such instability acts as a positive transport mechanism for the electrodialysis via amplifying mass transport rate. On the other hands, in the electrochemical battery and the microfluidic applications, the instability provokes unwanted mass transport. In this research, to control the electroconvective instability, the onset of the instability was analyzed as a function of confinement effect as well as applied voltage. As a result, we figured out that the dynamic behavior of electroconvective instability transited as a sequence of stable regime - static regime - chaotic regime depending on the applied voltage and confinement effect. Furthermore, stability curves about the dynamic transition were numerically determined as well. Conclusively, the confinement effect on electroconvective instability can be applied for effective means to control the electrokinetic chaos.

Application of Multi-step Undervoltage Load Shedding Schemes to the KEPCO System

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Choy, Young-Do;Kim, Tae-Kyun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.476-484
    • /
    • 2009
  • This paper deals with improvements to the special protection schemes (SPS) which have been applied to the low probability and high impact contingencies in the Korea Electric Power Corporation (KEPCO) system since 2004. Among them, the SPS for voltage instability in the Seoul metropolitan area is considered in this paper, and is a form of event-based undervoltage load shedding with a single-step scheme. Simulation results based upon a recent event that occurred on 765kV lines show that the current setting values of the SPS have to be revised and enhanced. In addition, by applying response-based multi-step undervoltage load shedding (UVLS) schemes to severe contingencies in the system, more effective results than those of the existing single-step SPS can be obtained. Centralized and distributed UVLS schemes are considered in the simulation. ULTC-based load recovery models and over excitation limiters (OXL) for the KEPCO system are also included in the long-term voltage instability studies.

Dynamic Coordination Strategies between HVDC and STATCOM

  • Kim, Chan-Ki;Sood, Vijay;Lee, Seok-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.892-902
    • /
    • 2009
  • This paper deals with the dynamic voltage control problem at the inverter end of a HVDC link when connected to a weak AC system which has the potential for harmonic instability and commutation failures. The dynamic voltage control problem is tackled with a STATCOM (Static Compensator), which not only provides a rapid recovery from harmonic instability and commutation failures but also offers a lower cost filter design for HVDC systems. PSCAD/EMTDC simulations are presented to validate the proposed topology and to demonstrate its robust performance.

Analysis of Power System Voltage instability using PSS/OPF (PSS/OPF를 이용한 실계통 전압 불안정 해석)

  • Choi, H.K.;Moon, Y.H.;Lee, B.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.20-23
    • /
    • 2001
  • Stability aspects have often been incorporated in the dispatch/pricing procedure using trial and error methods, or approximated in the dispatch optimization directly as a set of linear constraints on generation/transmission. This paper presents introduction of PSS/OPF and voltage instability analysis using the program. Additional advantages offered by FSS/OPF are easier procedures, less computation and avoidance of engineering judgement in identifying the amount of shunt requrement at the candidate buses.

  • PDF

A Study on the Application of Under Voltage Load Shedding Scheme in Line Contingency considering Motor Load (모터부하를 고려한 상정사고 발생 시 저전압 부하차단 적용 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • Failure of high-voltage transmission line, which is responsible for large-scale power transmission, can be reason for system voltage instability. There are many methods to prevent voltage instability like adjustment of equipment, the generator voltage setting, and load shedding. Among them, the load shedding, have a problem of economic loss and cascading effect to power system. Therefore, the execution of load shedding, amount and timing is very important. Conventionally, the load shedding setting is decided by the preformed simulation. Now, it is possible to monitor the power system in real time by the appearance of PMU(Phasor Measurement Unit). By this reason, some of research is performed about decentralized load shedding. The characteristics of the load can impact to amount and timing of decentralized load shedding. Especially, it is necessary to consider the influence of the induction motor loads. This paper review recent topic about under voltage load shedding and compare with decentralized load shedding scheme with conventional load shedding scheme. And simulations show the effectiveness of proposed method in resolving the delayed voltage recovery in the Korean Power System.

A Study on the Dynamic Voltage Stability Considering the Power System Security Control (계통(系統)의 안전성(安全性) 제어(制御)를 고려(考慮)한 동적(動的) 전압안정도(電壓安定度)에 관(關)한 연구(硏究))

  • Lee, Geun-Joon;Hwang, Jong-Young;Lee, Gil-Soon;Jeong, Tay-Ho;Kim, Keon-Jung;Kim, Yong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.54-60
    • /
    • 1994
  • The cause of black out of Tokyo Power in 1987 has been identified as the voltage stability problem. After this event many researchers has been interested in voltage stability or voltage collapse phenomena. The voltage instability is different Com the transient stability in the sense of reactive power mismatch and the long duration time. In this study, we developed efficient tool for analyze and control the dynamic voltage instability. To analize specific condition of dynamic voltage stability, quasi-dynamic simulation method is developed. To provide proper mathmatical model for dynamic voltage stability, generator, SVC, OLTC, induction motor models are introducted. To provide specified dynamic voltage stability, the authors considered to use reactive loss function(${\partial}Q/{\partial}p_L$) as reactive power facility control index. This program was tested and identified its usefulness in real KEPCO system.

  • PDF

Effective Calculation Method Finding the Limit of Voltage-Stability (효율적인 전압안정도 한계점 계산에 관한 연구)

  • Song, K.Y.;Kim, S.Y.;Choi, S.G.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.35-38
    • /
    • 1991
  • Recent, problems on the voltage-instability have been paid attention in power system and methods to find the limit of voltage-stability, concerned with these problems, were developed. However, these methods are short of precision on the limit of voltage-instability. Here, using the second-order load flow, constraint equation(d Pi/d Vi=0) and its patial differentiations are precisely formulated. Also, since the taylor series expansion of power flow equations terminates at the second-order terms, partial differentiations of constraint equation, that is Hessian, are constant. Then, Hessian matrix are calculated once during iteration process.

  • PDF

Application of ULTC and load models in dynamic voltage stability analysis (동적 전압안정도 해석에서의 ULTC 및 부하모델의 적용)

  • Song, Hwa-Chang;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.411-413
    • /
    • 2005
  • Static approaches usually employed in voltage stability analysis are based on the pre-determined scenarios of varying load and generation patterns. Thus, even though the approaches are applied to the same system condition, one may obtain different voltage instability phenomena using different scenarios. In the stage of concrete control strategy determination against voltage instability, dynamic approaches with full-time and/or quasi steady-state simulations need to be applied in order to confirm the effectiveness of the established control strategies. This paper describes the ULTC and dynamic load models, and discusses characteristics of the models.

  • PDF