• Title/Summary/Keyword: Voltage distribution

Search Result 2,072, Processing Time 0.023 seconds

Voltage Regulation Method Considering Load Variation Characteristics of High and Low Voltage Distribution Line in Distribution System (시간 불일치성을 고려한 배전계통 전압조정방법)

  • Kim, T.E.;Kim, C.S.;Kim, J.E.;Son, J.M.;Park, J.K.;Rho, D.S.;Kim, K.H.;Cho, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.115-117
    • /
    • 2002
  • In general, it is supposed that load characteristics of high and low voltage distribution line are always coincidence. But in practical distribution system, voltage variation characteristics of high and low voltage distribution line are not same. Then in this paper, we proposes a voltage regulation method considering load variation characteristics of high and low voltage distribution line in distribution system.

  • PDF

Voltage Regulation Method at the Power Distribution System interconnected with DSG System (분산형전원이 연계된 배전계통의 전압조정에 관한 연구)

  • Choi, Joon-Ho;Chu, Dong-Wook;Kim, Jae-Chul;Hwang, Chi-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.250-252
    • /
    • 1997
  • This paper deals with voltage regulation at the power Distribution system interconnected with DSG. Modern distribution substation adopt LDC method as the voltage regulation method to deliver suitable voltages to many customers. However, the operations of DSG interconnected with distribution system, the customers' voltage violate the permissible voltage limits. Therefore, to deliver suitable voltage to many customers at the distribution substation, an advanced voltage regulation method is required. In this paper, the on line realtime MLDC (Multiple Line Drop compensation) method, considered daedband and hysterical tap changing of the ULTC, is proposed. The result from a simulation study shows that the proposed method can be practical applications for the voltage regulation at the distribution system interconnected with DSG and unbalanced load pattern among feeders.

  • PDF

A Study on Bipolar DC-DC Converter for Low Voltage Direct Current Distribution (저압 직류 배전용 양극성 DC-DC 컨버터에 관한 연구)

  • Lee, Jung-Yong;Kim, Ho-Sung;Cho, Jin-Tae;Kim, Ju-Yong;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.229-236
    • /
    • 2019
  • This study proposes a DC-DC converter topology of solid-state transformer for low-voltage DC distribution. The proposed topology consists of a voltage balancer and bipolar DC-DC converter. The voltage and current equations are obtained on the basis of switching states to design the controller. The open-loop gain of the controller is achieved using the derived voltage and current equations. The controller gain is selected through the frequency analysis of the loop gain. The inductance and capacitance are calculated considering the voltage and current ripples. The prototype is fabricated in accordance with the designed system parameters. The proposed topology and designed controller are verified through simulation and experiment.

A Study on the Optimal Introduction of Step Voltage Regulator(SVR) in Distribution Feeders (고압배전선로용 선로전압조정장치(SVR)의 최적 도입방안에 관한 연구)

  • Lee Eun-Mi;Kim Mi-Young;Rho Dae-Seok;Sohn Sang-wook;Kim Jae-Eon;Park Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.610-618
    • /
    • 2004
  • With the development of industry and the improvement of living standards, better quality in power electric service is required more than ever before. Under these circumstances, to deliver reasonable voltage regulation methods in distribution systems need to be developed. So, This paper deals with optimal introduction of the line voltage regulator (SVR : Step Voltage Regulator) in power distribution systems. First, This paper investigates characteristics of SVR and performs economic evaluation of SVR's introduction by using Present Worth Method. This paper, also suggests proper location and optimal voltage regulation algorithm. In order to deliver suitable voltages to as many customers as possible, the optimal sending voltage of SVR should be decided by the effective operation of voltage regulators at the distribution feeders. The simulation results using a model distribution system and real distribution systems show that the proposed methods can be a practical tool for the voltage regulation in distribution systems.

A Study on the Optimal Voltage Regulation in Distribution Systems with Dispersed Generation Systems (분산형전원이 도입된 배전계통의 최적전압조정 방안에 관한 연구)

  • Kim Mi-Young;Oh Yong-Taek;An Jae-Yun;Kim Jae-Eon;Kim Eung_Sang;Rho Dae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.251-258
    • /
    • 2005
  • Recently, the domestic and foreign power trends are the supply of high quality power and environment conservation technology based on the new energies development. So, the dispersed generation systems, such as photovoltaic, fuel cell, and battery are to be introduced in distribution systems. According to the situation change, power of high Quality and reliability are required in distribution systems with dispersed generation. Up to now, the voltage in distribution systems are regulated by ULTC of substation and pole transformer of primary feeders. These days, Step Voltage Regulator(SVR) is getting established at distribution feeders to regulate effectively voltage of primary ffeders that voltage drop exceeds $5\%$. But, because SVR is operated independently with ULTC of substation, SVR can not take play to its full effectivity. Under these circumstances, in order to deliver suitable voltages to as many customers as possible, new optimal voltage regulation algorithms are required in distribution system. So, this paper presents optimal voltage regulation algorithm to regulate voltage effectively for ULTC and SVR in distribution systems with dispersed generation systems.

Proposed Distribution Voltage Control Method for Connected Cluster PV Systems

  • Lee, Kyung-Soo;Yamaguchi, Kenichiro;Kurokawa, Kosuke
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.286-293
    • /
    • 2007
  • This paper proposes a distribution voltage control method when a voltage increase condition occurs due to reverse power flow from the clustered photovoltaic (PV) system. This proposed distribution voltage control is performed a by distribution-unified power flow controller (D-UPFC). D-UPFC consists of a hi-directional ac-ac converter and transformer. It does not use any energy storage component or rectifier circuit, but it directly converts ac to ac. The distribution model and D-UPFC voltage control using the ATP-EMTP program were simulated and the results show the voltage increase control in the distribution system.

Characteristic Impedances in Low-Voltage Distribution Systems for Power Line Communication

  • Kim, Young-Sung;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • The input and output impedances in a low voltage distribution system is one of the most important matters for power line communication because from the viewpoint of communication, the attenuation characteristic of the high frequency signals is greatly caused by impedance mismatch during sending and receiving. The frequency range is from 1MHz to 30MHz. Therefore, this paper investigates the input and output impedances in order to understand the characteristic of high frequency signals in the low voltage distribution system between a pole transformer and an end user. For power line communication, the model of Korea's low voltage distribution system is proposed in a residential area and then the low voltage distribution system is set up in a laboratory. In the low voltage distribution system, S parameters are measured by using a network analyzer. Finally, input and output impedances are calculated using S parameters.

Analysis of Induced Voltage on Telecommunication Line in Parallel Distribution System

  • Kim, Hyun-Soo;Rhee, Sang-Bong;Lee, Soon-Jeong;Kim, Chul-Hwan;Kim, Yoon Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.726-732
    • /
    • 2014
  • A current flowing through a distribution conductor produces induced voltage, which is harmful to a telecommunication line. Previous research on induced voltage has been focused on single-circuit lines in the distribution system. However, the double-circuit lines, referred to as parallel distribution lines, are widely used in distribution systems because they have significant economic and environmental advantages over single-circuit lines. Therefore, a study on the induced voltage in double-circuit lines is needed. This paper presents a method of calculating the induced voltage in a parallel distribution system using four-terminal parameters and vector analysis. The calculation method is verified by the Electromagnetic Transient Program (EMTP) simulation.

A Study on the Adequacy Analysis of Distribution Line Drop for Improvement of Consumer Voltage Fluctuation (수용가 전사변동의 개선을 위한 배전선로의 적정성해석에 관한 연구)

  • 김은배;정상흔
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.7
    • /
    • pp.11-17
    • /
    • 1982
  • In this paper, a reliable and convenient evaluation method for the adequacy of any radial distribution line's voltage drop is proposed for improvement of the voltage regulation of the distribution line under operation. Using the voltage measurement of the first load branch point and the last point on the given distribution line its average line voltage drop and the line voltage drop variance by pure load variation are computed. And by these values and allowable or required line drop from proper voltage regulation view point, present adequency index and operation improvement index of the line drop are newly introduced for the evaluation of the given distribution line's voltage regulation. As a result of application to the 4 cases of study, the proposed method is proved to be reliable and convenient.

  • PDF

Evaluation of Interconnection Capacity of SCOGNs to the power Distribution Systems from the Viewpoint of Voltage Regulation (전압조정 측면에서 본 소형 열병합발전 배전계통 도입량 평가)

  • 최준호;김재철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1096-1102
    • /
    • 1999
  • This paper discusses the evaluation of interconnection capacity of small cogeneration(SCOGN) systems to the power distribution systems from the viewpoint of voltage regulation. Power utilities are required to keep the customers' voltage profile over a feeder close to the rated value under all load conditions. However, it is expected that the interconnection of SCOGNs to the power distribution systems impacts on the existing voltage regulation method and customers' voltage variations. Therefore, SCOGNs should be integrated to the automated power distribution systems to prevent interconnection problems and supply high quality electricity to the customers. For these reasons, we should proceed with the evaluation of interconnection capacity of SCOGNs to the power distribution systems. However, it is generally impossible to perform actual testing on the power distribution systems, and standardized methodologies and guidelines are not developed to evaluate it. The criterion indexes for voltage regulation and variations are presented in order to evaluate the interconnection capacity of SCOGNs to the power distribution systems. In addition, the evaluation methodology of interconnection capacity of SCOGNs for power distribution systems is presented. It is expected that the resulted of this paper are useful for power system planners to determine the interconnection capacity of SCOGNs and dispersed storage and generation (DSG) systems to the power distribution systems.

  • PDF