• Title/Summary/Keyword: Voltage dips

Search Result 19, Processing Time 0.024 seconds

Ride-through of PMSG Wind Power System Under the Distorted and Unbalanced Grid Voltage Dips

  • Sim, Jun-Bo;Kim, Ki-Cheol;Son, Rak-Won;Oh, Joong-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.898-904
    • /
    • 2012
  • This paper presents a ride-through skill of PMSG wind turbine system under the distorted and unbalanced grid voltage dips. When voltage dips occur in the grid, pitch control and generator speed control as well as a parallel resistor of DC-link help to keep the turbine's safety. Modern grid code requires a wind turbine to supply reactive currents to help voltage recovery after grid faults clearance. In order to supply reactive currents to the grid in case of the distortedly unbalanced grid voltage dips, a special PLL is needed to control the grid side converter and to regulate the grid voltages symmetrically. The proposed method is applied to 2MW multi-pole PMSG wind turbine system, and verified by simulation.

Momentary Voltage Dips in the Power Distribution System Interconnected with Cogeneration Facilities (COGN) (소형 열병합 발전설비가 연계된 배전계통의 순시전압변동)

  • Choi, Joon-Ho;Kim, Jae-Chul;Jung, Sung-Kyo;Kim, Dae-Won;Han, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1088-1090
    • /
    • 1998
  • The cogeneration facilities (COGN) into the power distribution system can cause operational problems - reenergization of distribution feeders under repair by utility personnel, voltage variation and regulation because of output power of COGN, and lost of coordination at emergency state - on an electrical utility system. This paper deals with momentary voltage dips as the parallel interconnection operation of COGN in the power distribution system. PSCAD/EMTDC simulation tool is used to show the behavior of momentary voltage dips. In addition, restraint solution for momentary voltage variation is presented.

  • PDF

A DVR Control for Compensating Unbalanced Voltage Dips of a DFIG System using Zero Sequence Components

  • Thinh, Quach Ngoc;Ko, Ji-Han;Kim, Dong-Wan;Kim, Eel-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.62-68
    • /
    • 2013
  • The dynamic voltage restorer (DVR) is an effective protection device for wind turbine generators based on doubly-fed induction generator (DFIG) that is operated under unbalanced voltage dip conditions. The compensating voltages of the DVR depend on the voltage dips and on the influence of the zero sequence component. The zero sequence component results in high insulation costs and asymmetry in terminal voltages. This paper proposes the use of a proportional-resonant controller in stationary reference frames for controlling zero sequence components in the DVR to protect the DFIG during unbalanced voltage dips. To enhance the proposed control method, a comparison is carried out between two cases: with and without using the control of a zero sequence component. Simulation results are presented to verify the effectiveness of the proposed control method by using the Psim simulation program.

A Study on the Reliability of DVR in a 3-Phase Phase-Controlled Rectifier

  • Kim, Woo-Hyun;Park, Chul-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.54-61
    • /
    • 2012
  • This study investigated the relationship between the response time of DVR (Dynamic Voltage Restorer) and the possible compensation range for voltage dips by the DVR system which protects the 3-phase phase-controlled rectifier from said dips. As a result, the permissible range of voltage dip is presented in a 3-phase phase-controlled rectifier. When the DVR compensates for voltage dip, the range of voltage dip can be compensated according to the DVR's response time. Using the proposed method, DVR response time can be determined from the parameters of the 3-phase phase-controlled rectifier and the possible compensatory range of voltage dip, while at the same time it is possible to use a control system having an appropriate speed. Therefore, the use of excessively fast equipment can be avoided, improving the stability of the overall system. The reliability of the DVR concerning the 3-phase phase-controlled rectifier can be verified by simulation.

Controlling Zero Sequence Component in DVR for Compensating Unbalanced Voltage Dip of a DFIG

  • Ko, JiHan;Thinh, Quach Ngoc;Kim, SeongHuyn;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.154-155
    • /
    • 2012
  • The dynamic voltage restorer (DVR) is an effective protection device for wind turbine generator based on doubly-fed induction generator (DFIG) operated under the unbalanced voltage dip conditions. The compensating voltages of DVR depend on the voltage dips and on the influence of the zero sequence components. If the $Y_0/{\Delta}$ step-up transformers are used, there are no zero sequence components on the DFIG side. However, if the $Y_0/Y_0$ step-up transformers are used, the zero sequence components will appear during faults. The zero sequence components result in the high insulation costs and the asymmetric of the terminal voltages. This paper proposes a method for controlling zero sequence components in DVR to protect DFIG under unbalanced voltage dips. Simulation results are presented to verify the effectiveness of the proposed control method.

  • PDF

LVRT Scheme for Doubly Fed Induction Generator Systems Based on Flux Tracking Method (자속 추종을 통한 DFIG 시스템의 LVRT 기법)

  • Park, Sun-Young;Chun, Yeong-Han;Lee, Dong-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1059-1065
    • /
    • 2013
  • Doubly Fed Induction Generator(DFIG) systems occupy the largest proportion of worldwide wind energy generation market. DFIG systems are very sensitive to grid disturbances especially to voltage dips due to the structure of the stator connected to grid. In the past, when a grid fault occurs generators are separated from grid(trip method) in order to protect the systems. Nowadays, due to the growing penetration level of wind power, many countries have made some requirements that wind turbines are required to have Low Voltage Ride Through(LVRT) capability during grid faults. In this paper, a flux tracking LVRT control strategy based on system modeling equations is proposed. The validity of the proposed strategy is verified through computer simulations.

Transient Stability of Industrial Plant on Voltage Disturbance in the Utility System (전력계통 전압외란에 대한 자가수용가의 과도 안정도 해석)

  • 조양행;정재길
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.132-138
    • /
    • 1998
  • The dynamic analysis of stability in industrial power system is an important subject. In this paper, the effect of voltage dips for short duration (short-circuit) in the utility system on generators, synchronous motors of the industrial plant and the measures to be adopted to reduce the undesired effects of voltage dips re investigated. In the case of utility three-phase short-circuits of longer duration, both the generators and synchronous motors in the plant may become unstable. In order to avoid instability through fault clearing in the second zone time a decoupling device is necessary. The instability of voltage can be avoided with a well suited setting time of disconnecting device and load trip.

  • PDF

Analysis on Momentary Voltage Dips with the Interconnection Operation of Utility-interactive Cogneration Systems Considering Their Generator Type (발전기 형태를 고려한 열병합발전시스템의 배전계통 연계운전시의 순시전압변동 해석)

  • 최준호;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.23-30
    • /
    • 2000
  • Cogeneration systems are seen as a significant innovation for dispersed energy generation since they are both environmentally friendly and has comparatively high degrees of efficiency. It is especially suited for the decentralized provision of electricity and heat. However, it causes operational problems such as voltage regulation, voltage variation, protection and safety. Especially, it is expected that the interconnection/disconnection operation of cogeneration system has an effect on distribution voltage regulation and variation. Recently, with the increased use of customer-owned computers and other sensitive electronic equipment, electric power quality has become an important concerns. Therefore, the voltage quality problems with cogeneration system should be investigated because the voltage quality is an important part of electrical power quality. In this paper, the momentary voltage dips associated with the interconnection/disconnection operation of cogeneration system are analyzed, including restraint solutions at the customer level. In addition, the unit capacity of cogeneration systems per feeder are evaluated from the view point of momentary voltage variations. The results of this paper are useful analysis data for interconnection standards/guidelines of cogeneration systems and dispersed generation (DG)

  • PDF

A Robust PLL of PCS for Fuel Cell System under Unbalanced Grid Voltages (불평형 계통전압에 강인한 연료전지용 전력변환시스템의 PLL 방법)

  • Kim, Yun-Hyun;Kim, Wang-Rae;Lim, Chang-Jin;Kim, Kwang-Seob;Kwon, Byung-Ki;Choi, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.103-105
    • /
    • 2008
  • In grid-interconnection system, a fast, robust and precise phase angle detector is most important to grid synchronization and the active power control. The phase angle can be easily estimated by synchronous dq PLL system. On the other hand under unbalanced voltage condition, synchronous dq PLL system has problem that harmonics occur to phase angle or magnitude of grid voltage because of the effect of the negative sequence components. So, To eliminate the negative sequence components, the PLL method using APF (All Pass Filter) in a stationery reference frame to extract positive sequence components under unbalanced voltage condition is researched. In this paper, we propose a new PLL method with decoupling network using APF in a synchronous reference frame to extract the positive sequence components of the grid voltage under unbalanced grid. The cut-off frequency of APF in a synchronous reference frame can be set to twice of the fundamental frequency comparing with that of APF in a stationery reference frame which is the fundamental frequency. The proposed PLL strategy can detect the phase angle quickly and accurately under unbalanced gird voltages. Simulation and experimental results are presented to verify the proposed strategy under different kind of voltage dips.

  • PDF

3-Phase Hybrid Series Active Power Filter with Dynamic Voltage Restorer (DVR 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • Han Seok-Woo;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.598-602
    • /
    • 2002
  • This paper presents the 3-phase hybrid series active power filter with dynamic voltage restorer(DVR) which serve as an energy buffer and current harmonics blocking resistor connected to sensitive loads, such as, to compensate voltage dips and current harmonics in power distribution system. The DVR is to inject a dynamically controlled voltage generated by a forced commutated converter in series to the bus voltage by means of a booster transformer. The momentary amplitudes of the three injected phase voltages are controlled such as to eliminate any detrimental effects of a bus fault to the load voltage. The proposed system is able to simultaneously compensate current harmonics, voltage fluctuating and voltage unbalance in power distribution systems. The reference phase angle detected by synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The effectiveness of proposed system is verified by the computer simulation.

  • PDF