• Title/Summary/Keyword: Voltage bus conditioner

Search Result 21, Processing Time 0.025 seconds

Current Sensorless Control of the Voltage Bus Conditioner for a DC Power System with Parallel Pulsed Power Loads (병렬 펄스 부하를 갖는 직류 전력시스템을 위한 Voltage Bus Conditioner의 전류 센서 없는 제어)

  • Lee, Byung-Hun;Chang, Han-Sol;La, Jae-Du;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1617-1624
    • /
    • 2012
  • A DC power system has many loads with varied functions. Also, there may be large pulsed loads with short duty ratios which can affect the normal operation of other loads. In this paper, Voltage Bus Conditioner(VBC) without any current sensors is proposed to damp the bus voltage transients by parallel pulsed loads. The proposed control approach requires only one voltage sensor and carries out both the functions of damping the bus voltage transients and maintaining the level of energy stored. The proposed control technique has been implemented on a TMS320F2812 Digital Signal Processor(DSP). Simulated results by a Matlab Simulink and experimental results are presented which verify the control principles and demonstrate the practicalty of the approach.

The Comparison of Two Control Algorithm for a Voltage Bus Conditioner in a DC Power Distribution System (DC 전력시스템에서의 Voltage Bus Conditioner의 제어기법 비교)

  • La, Jae-Du;Lee, Yong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • A Voltage Bus Conditioner (VBC) is used to mitigate the voltage transients on a common power distribution bus. The VBC described here utilises inductive storage and unlike its counter part with capacitive storage, it can employ the entire stored energy towards transients' mitigation. The performances of adaptive duty ratio control and sliding mode control have been compared. The simulation results (with the package SABER) indicate that the sliding mode control results in the shortest and the smallest bus voltage excursions.

An Improved Adaptive Control Technique for the Voltage Bus Conditioner with the Reduced Capacitive Storage (축소된 캐패시터 스토리지를 갖는 Voltage Bus Conditioner의 향상된 적응제어)

  • La, Jae-Du;Lee, Yong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • More and all-electric aircraft (AEA) carry many loads with varied functions. In particular, there may be large pulsed loads with short duty ratios which can affect the normal operation of other loads. In this paper, a converter with spilt capacitors and an improved adaptive controller is used as the Voltage Bus Conditioner (VBC) with the reduced capacitive storage to mitigate the voltage transients on the bus. The proposed converter allows the smaller capacitive storage. Also, the proposed controller has the advantage of requiring only one sensor and performing both the functions of mitigating the voltage bus transients and maintaining the level of energy stored. Experimental results are presented which verify the control principles and demonstrate the practicality of the approach.

A Voltage Bus Conditioner for a High Voltage DC Power Distribution System using High Performance Hysteresis Control (고성능 히스테리 제어를 이용한 고전압 DC 전력시스템을 위한 Voltage Bus Conditioner)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.2
    • /
    • pp.90-98
    • /
    • 2007
  • More and All-Electric Aircraft (AEA) carry many loads with varied functions. In particular, there may be large pulsed loads with short duty ratio, which can affect the normal operation of other loads. In this paper, a bi-directional converter with inductive storage is used as a voltage bus conditioner (VBC) to mitigate voltage transients on the bus. In addition, the constant frequency hysteresis control technique for a VBC is presented. A simple and fast prediction of the hysteresis band-width is implemented by the phase-lock loop control, keeping constant switching frequency. This technique offers the excellent dynamic response in load or parameter variation. The control performance is illustrated by simulated results with the SABER package, The proposed hysteresis control results in the shortest and the smallest excursions.

An improved adaptive control technique for the Voltage Bus Conditioner with parallel loads in the DC Power Distribution System (병렬 부하를 갖는 DC배전 시스템을 위한 Voltage Bus Conditioner의 향상된 적응제어)

  • Lee, Byung-Hun;Chang, Han-sol;La, Jae-Du;Kim, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.249-250
    • /
    • 2011
  • In DC Power Distribution System(DC PDS), a bus voltage instability is occurred by multiple parallel loads. The Voltage Bus Conditioner(VBC) is used to mitigate the DC bus voltage transient. An adaptive controller of the VBC is designed and the simulation result of the controller is verified by PSIM simulation package for the proposed control technique.

  • PDF

The design of the Sliding Mode Controller of Voltage Bus Conditioner for a DC Power Distribution System with multiple parallel loads in the Electrical Vehicles (다중 병렬 부하를 갖는 전기 자동차의 DC 배전 시스템을 위한 Voltage Bus Conditioner의 슬라이딩 모드 제어기 설계)

  • Chang, Han-Sol;Jeon, Yong-Sung;La, Jae-Du;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1141-1142
    • /
    • 2011
  • An electrical vehicle (EV) is a huge issue in the automotive industry. The EV have many electrical units: electric motors, batteries, converters, ets. The DC power distribution system (PDS) is essential for the EV. The DC PDS offers many advantages. However, multiple loads in the DC PDS may affect the severe instability on the DC bus voltage. Therefore, a voltage bus conditioner (VBC) may use the DC PDS. The VBC is used to mitigate the voltage transient on the bus. In this paper, sliding mode controller (SMC) is designed for the VBC of DC PDS in the EV. The simulation results by PISM simulation package are presented for validating the proposed control technique.

  • PDF

The PI control of the Voltage Bus Conditioner for the improvement of the Power Quality in the DC Power Distribution System with multiple parallel loads (다중 병렬 부하를 가지는 DC 배전 시스템에서의 전력 품질 향상을 위한 Voltage Bus Conditioner의 PI 제어)

  • Lee, Byung-Hun;Woo, Hyun-Min;La, Jae-Du;Shin, Jae-Hwa;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1234-1235
    • /
    • 2011
  • A DC Power Distribution Systems(DC PDS) are widely used in telecommunication system, electric vehicle, aircraft, military system, etc. In the DC PDS, DC bus voltage instability may be occurred by the operation of multiple loads such as pulsed power load, motor drive system, and constant power loads. To damp the transients of the DC bus voltage, the Voltage Bus Conditioner(VBC) with the PI compensator is used. In this paper, the validity of the proposed VBC system is verified by PSIM simulation package.

  • PDF

The Design of the PI Compensator for a Voltage Bus Conditioner in the DC Distributed Power System (DC 배전시스템에서 Voltage Bus Conditioner를 위한 PI 보상기 설계)

  • Kim, Young-Seok;Seok, Bong-Jun;La, Jae-Du
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2195-2201
    • /
    • 2010
  • The VBC(Voltage Bus Conditioner) is a bidirectional DC-DC converter with the energy storage for damping the instability and any transients of bus voltage in the DC DPS(Distributed Power System). This paper presents the PI(Proportional Integration) controller for the VBC. The PI controller is not only damping the bus transient, but also keeping the storage voltage level. Matlab Simulink simulation and experimental results are presented by validity of the proposed control technique.

A Design of a PI Compensator for a Bidirectional DC-DC Converter in a DC Distributed Power System

  • Lee, Joonmin;Seok, Bong Jun;La, Jae Du;Kim, Young Seok
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.391-396
    • /
    • 2012
  • The Voltage Bus Conditioner(VBC) is a bidirectional DC-DC converter for damping the instability and any transients of the bus voltage in a DC Distributed Power System(DPS). In this paper, a PI controller for the VBC has been designed for the frequency domain. The proposed PI controller not only dampens the bus transients, but also keeps the storage voltage level. Simulation by Matlab/Simulink and experimental results are presented for the validity of the proposed control technique.

A Variable Hysteresis Control for a DC Bus Conditioner (DC Bus Conditioner을 위한 카변히스테리시스제어)

  • La, Jae-Du;Han, Moon-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.472-475
    • /
    • 2008
  • A DC distributed power system(DPS) has many loads with varied functions. In particular, there may be large pulsed toads with short duty ratio, which can affect the normal operation of other loads. In this paper, a bi-directional converts with inductive storage is used as a DC bus conditioner to damp voltage transients on the bus. In addition, the constant frequency hysteresis control technique for a DC bus conditioner is presented. A simple and fast prediction of the hysteresis band-width is implemented by the phase-lock loop control, keeping constant switching frequency. This technique offers the excellent dynamic response in load or parameter variation. The control performance is illustrated by simulated results with the SABER package. The proposed hysteresis control results in the shortest and the smallest excursions.

  • PDF