• Title/Summary/Keyword: Voltage Switching.

Search Result 3,312, Processing Time 0.033 seconds

A study on the ZVT method of high frequency DC-DC converter (ZVT방식 고주파 DC-DC 콘버어터 개발에 관한 연구)

  • Kye, Moo-Ho;Joe, Kee-Yeon;Hong, Sung-Chul;Kim, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.345-347
    • /
    • 1994
  • It is importent to have the switching frequency of power supplies increase in order to reduce their size and weight. But according to increasing the switching frequency, there are several defacts - that is switching losses, high voltage/current stresses and conduction losses and so on. That's why soft switching method was proposed. This paper presents the simulation and analysis of the new proposed Full bridge Zero-Voltage-Transition PWM DC-DC converter for developing that unit. This circuit doesen't increase the voltage and current stresses of main MOSFET switches. Voltage type quasi-resorent method is applied and expected high effenciency. Switching frequency is 100KHz and main switches are MOSFET.

  • PDF

Investigation of Capacitor Voltage Regulation in Modular Multilevel Converters with Staircase Modulation

  • Shen, Ke;Wang, Jianze;Zhao, Dan;Ban, Mingfei;Ji, Yanchao;Cai, Xingguo
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.282-291
    • /
    • 2014
  • This paper presents a detailed theoretical analysis and performance assessment of the capacitor voltage balancing strategies for staircase modulated modular multilevel converters (MMC) in terms of the algorithm structures, voltage balancing effect, and switching frequency. A constant-frequency redundancy selection (CFRS) method with minimal switching loss is proposed and the function realization of specific modules of the algorithm is given. This method is simple and efficient in both switching frequency and regulation capacity. Laboratory results show very good agreement with the theoretical analysis and numerical simulations.

A New Zero-Voltage-Switching PWM Converters with Zero-Current-Switched Auxiliary Switch (영전류 스위칭 방식의 보조스위치를 갖는 새로운 영전압 스위칭 방식의 PWM 컨버터)

  • 마근수;홍일희;김양모
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.632-640
    • /
    • 2003
  • In conventional Zero-Voltage-Transition(ZVT) PWM converters, zero-voltage turn-on and turn-off for main switch without increasing voltage/current stresses is achieved at a fixed frequency. The switching loss, stress, and noise, however, can't be minimized because they adopt auxiliary switches turned off under hard-switching condition. In this paper, new ZVS-PWM converters of which both active and passive switches are always operating with soft-switching condition are proposed. Therefore, the proposed ZVS-PWM converters are most suitable for avionics applications requiring high-power density. Breadboarded ZVS-PWM boost converters using power MOSFET are constructed to verify theoretical analysis.

The considerations of a High Frequency DC-AC Inverter in a Short Range Wireless Power Transfer Applications (근거리 무선전력전송용 고주파 DC-AC 인버터 회로 고찰)

  • Park, Jae-Hyun;Kim, Chang-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.37-38
    • /
    • 2010
  • For MHz-class high frequency inverter in wireless power transfer applications, the voltage/current surges can be occurred in power stage when driving on the inverter. And also, the high-frequency oscillations can be produced at a high switching frequency due to the parasitic elements. The voltage and current stresses of the switching devices lead to the switching losses. The efficiency of the high frequency inverter will be reduced. And the inverter circuit with the sudden voltage and current fluctuations also generates the noise such as the EMI. Zero voltage, zero current switching technique can be used to reduce the switching loss and the noise. The high power density and high efficiency can be obtained. In this paper, the high-frequency inverter for short-range wireless power transfer applications was discussed. The feasible inverter circuit is analyzed in the circuit operating characteristics and the results are verified by the simulation.

  • PDF

A New High Efficiency and Low Profile On-Board DC/DC Converter for Digital Car Audio Amplifiers

  • Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.83-93
    • /
    • 2006
  • A new high efficiency and low profile on-board DC/DC converter for digital car audio amplifiers is proposed. The proposed converter shows low conduction loss due to the low voltage stress of the secondary diodes, a lack of DC magnetizing current for the transformer, and a lack of stored energy in the transformer. Moreover, since the primary MOSFETs are turned-on under zero-voltage-switching (ZVS) conditions and the secondary diodes are turned-off under zero-current-switching (ZCS) conditions, the proposed converter has minimized switching losses. In addition, the input filter can be minimized due to a continuous input current, and an output inductor is absent in the proposed converter. Therefore, the proposed converter has the desired features, high efficiency and low profile, for a viable power supply for digital car audio amplifiers. A 60W industrial sample of the proposed converter has been implemented for digital car audio amplifiers with a measured efficiency of $88.3\%$ at nominal input voltage.

A Study on the Reduction Method and the Analysis of VCB Switching Surge for High Voltage Induction Motor (고압전동식용 진단차식기의 스위칭써지 해석 및 연구)

  • 이은웅;김종겸;김택수;이성철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.761-769
    • /
    • 1994
  • VCB (Vacuum Circuit Breaker), with the strong arc extinction capability in switching the source of an induction motor, occurs the severe switching surge voltage which can cause the breakdown or the deterioration of motor insulation. Therefore, a method which reduces surge voltage across motor windings is necessary. So, it is analyzed that fast-rise-time surges resulting from VCB switching operations give rise to severe voltage stress on turn insulation. Additionally, the switching surge simulation algorithms using EMTP are developed, and C, R values of surge suppressor minimizing the steep-fronted stress in winding insulation surges are calculated.

Analysis on the Switching Surge Characteristics of a High-Voltage Induction Motor Fed by PWM Inverter Using EMTP

  • Kim Jae-Chul;Song Seung-Yeop;Lee Do-Hoon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.22-30
    • /
    • 2005
  • The PWM inverter drive may cause an over voltage at the motor terminal, which imposes severe electric stresses on the inter-turn insulation of motor windings. Unlike low-voltage induction motors, high-voltage induction motors have a stator type of form-wound coil for insulation and are insulated to the slot and the coil. So, this paper presents a PWM 3-level inverter, H-Bridge cascaded 7-level inverter and High-voltage induction motor model. It then analyzes the voltage that generates at the input terminal of the high-voltage induction motor fed by each inverter. Also, in order to examine a factor that influences the switching surge voltage, this paper proposes the system equivalent model and performs the case studies using EMTP.

Analysis of Hybrid Converter with Wide Voltage Range Operation

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1099-1107
    • /
    • 2019
  • A soft switching converter with wide voltage range operation is investigated in this paper. A series resonant converter is implemented to achieve a high circuit efficiency with soft switching characteristics on power switches and rectifier diodes. To improve the weakness of the narrow voltage range in LLC converters, an alternating current (ac) power switch is used on the primary side to select a half-bridge or full-bridge resonant circuit to implement 4:1 voltage range operation. On the secondary-side, another ac power switch is adopted to select a full-wave rectifier or voltage-doubler rectifier to achiever an additional 2:1 output voltage range. Therefore, the proposed resonant converter has the capacity for 8:1 (320V~40V) wide output voltage operation. A single-stage hybrid resonant converter is employed in the study circuit instead of a two-stage dc converter to achiever wide voltage range operation. As a result, the study converter has better converter efficiency. The theoretical analysis and circuit characteristics are verified by experiments with a prototype circuit.

Soft-Switched PWM DC-DC High-Power Converter with Quasi Resonant-Poles and Parasitic Reactive Resonant Components of High-Voltage Transformer (부분 공진형 소프트 스위칭 PWM DC-DC 고전압 컨버터)

  • 김용주;신대철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.384-394
    • /
    • 1999
  • This paper deals with a fixed frequency full-bridge inverter type DC-DC high-power converter with high frequency high voltage(HFHV) transformer-coupled stage, which operates under quasi-resonant ZVS transition priciple in spite of a wide PWM-based voltage regulation processing and largely-changed load conditions. This multi-resonant(MR) converter topology is composed of a series capacitor-connected parallel resonant tank which makes the most of parasitic circuit reactive components of HFHV transformer and two additional quasi-resonant pole circuits incorporated into the bridge legs. The soft-switching operation and practical efficacy of this new converter circuit using the latest IGBTs are actually ascertained through 50kV trially-produced converter system operating using 20kHz/30kHz high voltage(HV) transformers which is applied for driving the diagnostic HV X-ray tube load in medical equipments. It is proved from a practical point of view that the switching losses of IGBTs and their electrical dynamic stresses relating to EMI noise can be considerably reduced under a high frequency(HF) switching-based phase-shift PWM control process for a load setting requirements.

  • PDF

Optimal Zero Vector Selecting Method to Reduce Switching Loss on Model Predictive Control of VSI (전압원 인버터의 모델 예측 제어에서 스위칭 손실을 줄이기 위한 최적의 제로 벡터 선택 방법)

  • Park, Jun-Cheol;Park, Chan-Bae;Baek, Jei-Hoon;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2015
  • A zero vector selection method to reduce switching losses for model predictive control (MPC) of voltage source inverter is proposed. A conventional MPC of voltage source inverter has not been proposed, and a method to select the redundancy of the zero vector is required for this study. In this paper, the redundancy of the zero vectors is selected with generating a zero sequence voltage to reduce switching losses. The zero vector of 2-level inverter is determined by determining sign of the zero sequence voltage. In the proposed method, the quality of the current is retained and switching loss can be reduced compared with the conventional method. This result was verified by P-sim simulation and experiments.