• Title/Summary/Keyword: Voltage Switching.

Search Result 3,312, Processing Time 0.029 seconds

A DTC-PWM Control Scheme of PMSM using an Approximated Voltage Function of Voltage Vector (전압벡터의 근사 전압함수를 이용한 PMSM의 DTC-PWM 제어방식)

  • Kwak, YunChang;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.421-428
    • /
    • 2015
  • An advanced direct torque control (DTC) with pulse width modulation (PWM) method is presented in this paper. The duty ratio calculation of the selected voltage vector is based on the voltage functions of the selected voltage vector according to the sector angle. The proposed DTC uses a conventional DTC scheme with six sector divisions and switching rules. However, the winding voltages are supplied by the PWM approach. Furthermore, the duty ratio of the switching voltage vector is determined by the flux, torque error, and motor speed. The base voltage that shall determine the duty ratio can be calculated by approximate voltage functions according to the voltage angle. For the calculation of base voltages, second-order quadratic functions are used to express the output voltage of the selected voltage vector according to voltage angle. The coefficients for the second-order quadratic functions are selected by the voltage vector, which is determined by the switching rules of the DTC. In addition, the voltage functions are calculated by the coefficients and voltage angle between the voltage vector and rotor position. The switching voltages from the calculated duty ratio can supply the proper torque and flux to reduce the ripple and error. The proposed control scheme is verified through practical experimental comparisons.

Image Sticking Property in the In-Plane Switching Liquid Crystal Display by Residual DC Voltage Measurements

  • Jeon, Yong-Je;Seo, Dae-Shik;Kim, Jae-Hyung;Kim, Hyang-Yul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.142-145
    • /
    • 2001
  • The residual DC phenomena in the in-plane switching(IPS)-liquid crystal display(LCD) by the voltage-transmittance (V-T) and capacitance-voltage (C-V) hysteresis method on rubbed polyimide (PI) surfaces were studied. We found that the residual DC voltage in the IPS-LCD was decreasing with the increasing concentration of cyano LCs. The residual DC voltage of the IPS-LCD can be improved by the high polarity of cyano LCs.

  • PDF

Zero-Voltage-Switching Boost Converter Using a Coupled Inductor

  • Do, Hyun-Lark
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.16-20
    • /
    • 2011
  • This paper presents a zero-voltage-switching (ZVS) boost converter using a coupled inductor. It utilizes an additional winding to the boost inductor and an auxiliary diode. The ZVS characteristic of the proposed converter reduces the switching losses of the active power switches and raises the power conversion efficiency. The principle of operation and a system analysis are presented. The theoretical analysis and performance of the proposed converter were verified with a 100W experimental prototype operating at a 107 kHz switching frequency.

Characteristics of power switching semiconductors for high voltage power converters (고압 전력변환장치를 위한 전력용 스윗칭 반도체 소자의 특성)

  • Seo, Beom-Seok;Shim, Eun-Yong;Cho, Sun-Bong;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.409-412
    • /
    • 1990
  • Series connection of power switching semiconductor elements is unavoidable when a high voltage convertor is aimed. However, it is important to equalize distribution of turn-off voltage because the switching elements have different characteristics. In this paper optimal switching control algorithm is proposed so that series connected poker switching semiconductor elements can be always switched simultaneous turn-on and turn-off.

  • PDF

Zero voltage and zero current switched converters (영전압 영전류 스위칭 방식의 컨버터)

  • 정규범
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.120-124
    • /
    • 1998
  • In this paper, new zero voltage and zero current switched PWM(Pulse Width Modulated) converters are suggested. The main and auxiliary switch of the converters satisfy soft switching conditions, which are zero voltage or zero current switching of the switches. The switching characteristics of the proposed converters are experimentally verified by boost typed converter, which has 250 kHz switching frequency. For the 250 kHz operation, turn on period of auxiliary switch is about 1/40 for switching period of 4 ${\mu}\textrm{s}$. Therefore, the conduction loss of auxiliary switch is reduced.

  • PDF

Soft-Switching Buck Converter Dropped Voltage Stress of a free-Wheeling Diode Using a Single Switching Device (단일 스위칭소자를 이용하여 환류다이오드의 전압스트레스를 강하시킨 소프트-스위칭 벅 컨버터)

  • 이건행;김영석;김명오
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.576-583
    • /
    • 2004
  • This paper presents a buck circuit topology of high-frequency with a single switching device. It solved the problem which arised from hard-switching in high-frequency using a resonant snubber and operating under the principle of ZCS turn-on and ZVS turn-off commutation schemes. In the existing circuit, it has the voltage stress that is almost twice of input voltage in a free-wheeling diode. In the proposed circuit, it has the voltage stress that is lower than input voltage with modifing a location of free -wheeling diode. In this paper, it expained the circuit operation of each mode and analyzed feedback-loop stabilization. Also it confirmed the waveform of each mode with simulation result. The experiment result verified the simulation waveform and compared the voltage stress of a free -wheeling diode in the exsiting circuit with the voltage stress of that in the proposed circuit. Moreover, it compares and analyzes the proposed circuit's efficiency with the hard-switching circuit's efficiency according to the change of load current.

A 48V-400V Non-isolated Bidirectional Soft-switching DC-DC Converter for Residential ESS (PPS 제어기법을 적용한 48V-400V 비절연 양방향 DC-DC컨버터)

  • Jeong, Hyeon-Ju;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.190-198
    • /
    • 2018
  • This paper proposes a nonisolated, bidirectional, soft-switching DC - DC converter with PWM plus phase shift (PPS) control. The proposed converter has an input-parallel/output-series configuration and can achieve the interleaving effect and high voltage gains, resulting in decreased voltage ratings in all related devices. The proposed converter can operate under zero-voltage switching (ZVS) conditions for all switches in continuous conduction mode. The power flow of the proposed converter can be controlled by changing the phase shift angle, and the duty is controlled to balance the voltage of four high voltage side capacitors. The PPS control device of the proposed converter is simple in structure and presents symmetrical switching patterns under a bidirectional power flow. The PPS control also ensures ZVS during charging and discharging at all loads and equalizes the voltage ratings of the output capacitors and switches. To verify the validity of the proposed converter, an experimental investigation of a 2 kW prototype is performed in both charging and discharging modes under different load conditions and a bidirectional power flow.

Bidirectional Soft Switching Three-Phase Interleaved DC-DC Converter for a Wide Input Voltage Range (넓은 범위 입력전압에 소프트 스위칭이 가능한 양방향 인터리브드 DC-DC 컨버터)

  • Choi, Woo-Jin;Lee, Kyo-Beum;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.313-320
    • /
    • 2015
  • This study deals with a bidirectional interleaved soft switching DC-DC converter for a wide range of input voltages. The proposed converter operates in complementary switching with the purpose of inductor size reduction and zero-voltage switching (ZVS) operation. The current ripple related to complementary switching is minimized by three-phase interleaved operation. The main characteristics of the proposed topology are its soft-switching method of operation and its simple structure. The soft-switching operation and the system efficiency of the proposed converter are verified by experimental results.

Power Module Bridge Type Auxiliary Resonant AC Link Snubber-Assisted Three-Phase Soft Switching Inverter

  • Hisashi Iyomori;Nagai, Shin-ichiro;Masanobu Yoshida;Eiji Hiraki;Mutsuo Nakaoka
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2004
  • This paper presents a novel three-phase power module bridge type auxiliary resonant AC link snubber for the three-phase voltage-fed sinwave soft switching PWM inverter operating under specific instantaneous space voltage vector modulation. The operating principle of this resonant snubber is described for current source load model during one switching period, along with its design approach based on the simulation data. The performance evaluations of space vector modulation three-phase sinewave soft switching inverter with a new three-phase active auxiliary resonant AC link snubber are discussed as compared with those of three-phase voltage source-fed sinewave hard switching PWM inverter with a standard space voltage vector modulation strategy. The power loss analysis and conventional efficiency estimation of three-phase soft switching PWM inverter using ICBT modules are carried out including all the conduction power losses based upon the measured v-i characteristics of IGBT and its antiparallel diode as well as their switching losses.

A Measurement of Switching Surge Voltage using Voltage Type Inverter (전압형 인버터 스위칭 서지전압 측정)

  • Kim, Jong-Gyeum;Lee, Eun-Woong;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.16-21
    • /
    • 2002
  • Most adjustable-speed drives(ASDs) designed to operate 220[V] induction motors incorporate voltage-source inverters (VSIs), which create motor voltages at high switching frequencies. The motor leads used to connect an ASD to a motor can behave like transmission lines for voltage pulses, which can be amplified (reflected) at the motor terminals. The resulting oscillatory transient, known as the long-lead effect, can stress and consequently degrade the statorinsulation system of a motor. This Brief describes the results of tests to 1) determine the correlation between peak motor voltage and the length of motor leads and 2) determine the correlation between peak motor voltage and the switching frequency of the ASD Insulation failures like this usually are caused by voltage surges. Voltage surges are often the result of switching power circuits, lightning strikes, capacitor discharges and solid-state power devices.

  • PDF