• Title/Summary/Keyword: Voltage Rising

Search Result 237, Processing Time 0.043 seconds

Analysis on Voltage Rise of Rail in High speed Railway System (고속철도 시스템의 레일 전위 상승 해석)

  • 이종우
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.481-485
    • /
    • 2003
  • In electric railway system, potential of rail has been risen, for return-current flows through rail. The magnitude of rising voltage is different to railway feed system, ground admittance of rail and the load current. If rising voltage of rail is large, electric shock can be occurred to passengers and maintenance- worker, In this paper, we estimate the rising voltage of rail in high speed railway system and check the safety to human beings.

A study on the Hazard analysis and Improving methods for an Electrical shock on the Platform (전철 고상홈 전기통전 위험요인 분석 및 대책 연구)

  • Wang Jong-Bae;Cho Yuen-Oak
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.258-262
    • /
    • 2004
  • In this paper, the hazard factors on voltage rising effect between the rail and the earth were reviewed in subway system of AC traction line according to moving condition and location of the train. Site measuring of voltage rising between conductor part of train and station floor was performed to ascertain the risk level on the passenger. Plans for preventing hazard of rail-voltage rising and electrical shock on the passengers at platform were proposed.

  • PDF

A Study on the Very Fast Rising High Voltage Pulse Using Distributed Circuit (분포정수회로를 이용한 고전압 급준 펄스 연구)

  • Kwak, Hee-Ro;Kweon, Dong-Jin;Song, Ill-Gun
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.274-277
    • /
    • 1994
  • This paper describes a very fast rising high voltage pulse generation for studying surge phinomenon and prebreakdown of liquid dielectric by appling the traveling wave theory of the distributed circuit. This very fast rising high voltage pulse generator consists of a charging coaxial cable, a discharging switch, and a terminating resistance. As results, the rising time of pulses are about 31(nsec), which is very fast, and its duration is 950[nsec] when using 200[m] coaxial cable. The length of the coaxial cable and changing voltage can regulate the duration and the amplitude or the polarity of the pulse. When terminated the resistance, capacitor and inductor, the measured waveform corresponds with simulated waveform.

  • PDF

Compact Power-on Reset Circuit Using a Switched Capacitor

  • Seong, Kwang-Su
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.625-631
    • /
    • 2014
  • We propose a compact power-on reset circuit consisting of a switched capacitor, a capacitor, and a Schmitt trigger inverter. A switched capacitor working with a clock signal charges the capacitor. Thus, the voltage across the capacitor is increased toward the supply voltage. The circuit provides a reset pulse until the voltage across the capacitor reaches the high threshold voltage of the Schmitt trigger inverter. The proposed circuit is simple, compact, has no static power consumption, and works for a wide range of power-on rising times. Furthermore, the clock signal is available while the reset pulse is activated. The proposed circuit works for up to 6 s of power-on rising time, and occupies a $60{\times}30{\mu}m^2$ active area.

A modelling on Shunt Reactors in Railway Power Transmission System (철도고배 전송선로 분로리액터 설치에 대한 모델링)

  • Lee, Jongsoo;Lee, Jongwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1262-1268
    • /
    • 2015
  • I In power transmission systems, voltage changes continuously as reactive power is whether over supply or shortage. Reactive power produces in generators and consumes in transmission lines, and loads. Voltages at end points of transmission lines rise which is called Ferranti effect. Excessive voltage rising can reduce transmission equipment life, the voltage rising is usually permitted within the limit of 10%~30% excess. Shunt reactors are installed in transmission lines to put a curb on voltage rising. In this paper, we tried to do modelling for shunt reactor configuration types which are no grounding, grounded and grouded neutral reactor. Simulation are carried out for reactor magnitude for compensating transmission line capacitance.

Analysis on Voltage Rise of Rail in High speed Railway System (고속철도 시스템의 레일 전위 상승 해석)

  • Myung, Sung-Ho;Lee, Jae-Bok;Lee, Jong-Woo;Lee, Jang-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1365-1367
    • /
    • 2000
  • In electric railway system, potential of rail has been risen, for return-current flows through rail. The magnitude of rising voltage is different to railway feed system, ground admittance of rail and the load current. If rising voltage of rail is large, electric shock can be occurred to passengers and maintenance-worker. In this paper, we estimate the rising voltage of rail in high speed railway system and check the safety to human beings.

  • PDF

Voltage rising simulation due to the ground fault in DC traction system (직류 급전시스템에서의 지락고장에 따른 전압상승 시뮬레이션)

  • Jung, Ho-Sung;Han, Moon-Seob;Park, Young;Chung, Sang-Gi;Kwon, Sam-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.215-217
    • /
    • 2008
  • DC fraction system can damage human and other facilities due to the rising of rail potential. Therefore the earth fault detection relay protects system using rail potential induced in train operation and ground fault. However the conventional protection system cannot operate due to the fault resistance and might operate unwanted voltage rising due to the other substation ground fault. So this paper models DC traction system using PSCAD/EMTDC and simulates the rail potential rising. We can estimate the rail potential rising in DC traction system through the various simulation.

  • PDF

Study on the Transfer Functions for Detecting Windings Displacement of Power Transformers with Impulse Method

  • Shon, Chae-Hwa;Yi, Sang-Hwa;Lee, Heun-Jin;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.876-883
    • /
    • 2012
  • The paper investigates three types of transfer function methods for detecting displacements of winding in a model transformer. To acquire these transfer functions, the measuring method of input voltage, current and its response is used in impulse method. The applied impulse voltages had three rising times, which were short rising time (less than 0.6 ${\mu}s$), medium rising time (about 0.8 ${\mu}s$) and long rising time (about 1 ${\mu}s$) in front waves. Every 10 measurements of voltage and current waves were averaged from 50 measurements of voltage and current waves. These transfer functions were tested in normal, 24mm elevated and 48mm elevated windings conditions and were analyzed with correlation coefficients and spectrum deviations. In the analysis, the results depend on the types of transfer functions and the rising times of input voltages.

Analysis of the relationship between breakdown voltage and defect of thyristor (사이리스터의 결함과 항복전압의 관계 분석)

  • Lee, Y.J.;Seo, K.S.;Kim, H.W.;Kim, K.H.;Kim, S.C.;Kim, N.K.;Kim, B.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.149-150
    • /
    • 2005
  • Thyristor breakdown voltage variation acceleration aging test was investigated. The breakdown voltage was deceased after 1000 hours acceleration aging test. It temperature rising caused by electric field concentration at the edge beveling region of the thyristor was confirmed using Silvaco device simulation. The local temperature rising is driving force for the defect propagation. Consequently, propagated defects of the beveling region seems to decrease thyristor's breakdown voltage.

  • PDF

A study for IT Based Optimal Voltage Control Method of Distribution Systems with Distributed Generation (IT기반 분산전원 연계 배전계통의 최적전압조정에 관한 연구)

  • Kim, Jung-Nyun;Baek, Young-Sik;Seo, Gyu-Seak
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.4
    • /
    • pp.139-143
    • /
    • 2006
  • Recently, standard of living improved and Information-Communication industry developed rapidly. Thereby, interest about electric power quality is rising worldwide. So, research and Development to enhance electric power quality in various viewpoint until most suitable supply system from each kind device to improve electric power quality. And specially, interest about voltage quality is rising by diffusion increase of information communication appliance and minuteness control appliance etc. Also Power consumption is increasing, but expansion of large size generator by environmental and site security problem is difficult. So, introduction of distribution generation is investigated actively by electric-power industry reorganization. Voltage management of power system had been controlled by ULTC (Under Load Tap Changer) in substation and pole transformer on the high voltage distribution line. But, voltage control device on substation and distribution line is applied each other separatively. Therefore, efficiency of line voltage control equipment is dropping. Also, research about introduction upper limit of distribution generation is consisting continuously. This paper presents cooperation use way between voltage control device and introduction upper limit of distribution generation for most suitable voltage control in distribution power system.