• 제목/요약/키워드: Voltage Interruption

검색결과 151건 처리시간 0.03초

영구정전과 순간전압강하를 고려한 신뢰도 비용 평가 (Evaluation of Reliability Worth Considering Sustained Interruptions and Voltage Sags)

  • 이희태;문종필;설규환;윤상윤;김재철
    • 조명전기설비학회논문지
    • /
    • 제22권5호
    • /
    • pp.13-20
    • /
    • 2008
  • 과거에는 순간전압강하(Sag)나 고조파(Harmonics)와 같은 순간전력품질 문제가 부하에 큰 영향을 미치지 않았으나, 최근 컴퓨터와 같은 마이크로 프로세서를 이용하는 민감부하의 사용 증가로 인하여 전력품질에 대한 관심이 고조되고 있다. 이에 따라 현재까지 영구정전(Sustained Interruption)에 초점을 맞추고 일부 순간정전(Momentary Interruption)을 포함하여 진행되어 온 배전계통 신뢰도 연구 분야는 새로운 전환점을 맞이하고 있다. 즉, 전력품질문제로 인하여 많은 민감기기들이 트립(Trip)되어 신뢰도 비용이 발생하기 때문에, 전력품질을 고려하지 않은 신뢰도 비용평가는 그 정확도가 떨어질 수밖에 없는 실정에 있다. 본 논문에서는 배전계통 사고 시 이 사고를 제거하기 위해 사용된 리클로져에 의해 발생하는 순간전압강하를 고려하였다. 기존의 영구정전에 의한 신뢰도 비용과 순간전압강하에 의해 트립되는 기기들의 신뢰도 비용을 포함하는 개선된 배전계통 신뢰도 비용 평가 기법을 제안하였다.

고성능 단상 선로응동형 DVR(Dynamic Voltage Restorer) (Development of High-Performance Single-Phase Line-Interactive Dynamic Voltage Restorer)

  • 배병열;이동근;곽노홍;박상호;한병문
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.1947-1954
    • /
    • 2007
  • This paper describes the development of a high-performance single-phase line-interactive Dynamic voltage Restorer, which is composed of an H-bridge inverter and super-capacitors. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with 3kVA prototype. The developed system can compensates the input voltage sag and interruption within 2ms, in which the maximum allowable duration of voltage interruption is 1.5 seconds. It can be effectively used to compensate the voltage interruption in the sensitive load, such as computer, communication equipment, automation equipment, and medical equipment. The developed system has a simple structure to be easily implemented with commercially available components and to be highly reliable in operation.

Hybrid 검출방식을 적용한 삼상 선로 응동형 DVR(Dynamic Voltage Restorer) 개발 (Development of Three-Phase Line-Interactive Dynamic Voltage Restorer with Hybrid Detection Method)

  • 정종규;한병문
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1954-1961
    • /
    • 2009
  • This paper describes the development of a three-phase line-interactive dynamic voltage restorer with hybrid detection method, which is composed of three H-bridge inverter modules and super-capacitors. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with a 3kVA prototype. The developed system can compensate the input voltage sag and interruption within 2ms. The maximum allowable duration of voltage interruption is about 4 seconds. The developed system can be effectively used to compensate the voltage interruption in the sensitive load, such as computer, communication devices, and automation devices, and medical equipment. The developed system has a simple structure to be easily implemented with commercially available components, and to be highly reliable in operation.

전압품질을 고려한 배전계통의 신뢰도 평가 (Reliability Evaluation for Considering the Voltage Quality in Power Distribution Systems)

  • 윤상윤;김언석;배주천;김낙경;박중신;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.525-527
    • /
    • 2000
  • This paper presents a reliability evaluation method for considering the voltage quality. The proposed evaluation methods are contained the sustained interruption, momentary interruption and voltage sag. For momentary interruption, evaluation indexes are divided the duration based index and the interruption cost index. For voltage sag, the final result of evaluation method represents the magnitude for customers' risk due to the voltage sag. The proposed method is tested using the RBTS model and a reliability data in KEPCO's system.

  • PDF

순간 정전시 펌프 구동용 유도전동기의 발전 동작에 관한 연구 (Study on the Generating Operations of the Induction Motor for Driving the Pump During Instantaneous Power Interruption)

  • 김종겸
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.65-70
    • /
    • 2016
  • Power interruption is a phenomenon that no voltage is displayed over a short time or long time. Most devices will not operate normally when the supply voltage is low or does not exist. However, the device can also be operated with a different power which is ensured by a separate power generation. Recently, power interruption has been reduced gradually by the improvement of electricity quality, its duration also has been very short. Induction motors are widely used for the pumping in the water and sewage facilities and power plant applications. The pump is used as a machine for moving the fluid in the high place from a low location. So pump equipment always have a potential energy. If a momentary interruption occurs, the potential energy of the pump is reversed as that of water turbine and motor is operated as generator. This study is an analysis for the voltage variation, current, torque and power flow by the generating operation of the induction motor before and after the change of momentary interruption.

진공차단기 3상 동시 차단시의 서지 특성 분석 (Surge Characteristics Analysis of Three-phase Virtual Chopping at Vacuum Circuit Breaker)

  • 김종겸
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1159-1164
    • /
    • 2018
  • Vacuum circuit breakers(VCB) are widely used for current interruption of high-voltage inductive loads such as induction motors. This VCB can be chopped off before the current zero due to its high arc-extinguishing capability. One of the outstanding features of VCB is that it can cut off high frequency re-ignition current more than other circuit breakers. If the transient recovery voltage generated in the arc extinguishing is higher than the dielectric strength of the circuit breaker, a re-ignition phenomenon occurs. The surge voltage of the re-ignition is very high in magnitude and the steepness of the waveform is so severe that it can act as a high electrical stress on the winding. If the high frequency current of one phase affects the other two phases when the re-ignition occurs, it may cause a high surge voltage due to the virtual current chopping. If the magnitude of the voltage allowed in the motor winding is high or the waveform level is too severe, it may lead to insulation breakdown. Therefore, it is necessary to reduce the voltage to within a certain range. In this study, we briefly explain the various phenomena at the time of interruption, analyzed the magnitude of the dielectric strength and the transient recovery voltage at the simultaneous three-phase interruption that can give the greatest influence to the inductive load, proposed a method to reduce the impact.

기중 아크 차단에 대한 접점 및 소호 재료의 영향 (Influence of Contact and Wall Material on Arc Interruption in Air)

  • 이상엽;박홍태;오일성;이경행
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1637-1639
    • /
    • 2001
  • Air arc interruption used in low rated voltage breaker, ACB and MCCB, have used the arc chamber composed of metal plates and insulating laminates which supposed these mechanically. and geometry and materials of arc chamber are very different by breaker manufacturer. These breakers have required to be smaller and to interrupt higher current by user. therefore the arc chamber geometry and material in breaker have been small, complex and various. The purpose of this study is to examine the effects of insulating laminates and contact materials on air arc interruption. Contacts were surrounded by a rectangle chamber of insulating laminates. Contact concoctions were composed of AgW, AgCdO that have used in low rated voltage breaker, and insulating laminates were polyester, epoxy. We found strong dependance of arc voltage on insulating material. The ablated vapor on polyester increased arc voltage that was useful in air arc interruption.

  • PDF

초고압 $SF_6$가스차단기의 소전류 차단성능 해석기술 II (Evaluation Method II of the Small Current Breaking Performance of SF$_6$-Blown High-Voltage Gas Circuit Breakers)

  • 송기동;이병윤;박경엽;박정후
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권8호
    • /
    • pp.384-391
    • /
    • 2001
  • The insulation strength between contacts after current interruption to the transient recovery voltage i.e., the dielectric recovery strength should be estimated for the evaluation of the small capacitive current interruption capability. Many authors have used theoretical and semi-experimental approaches to evaluate the transient breakdown voltage after the current interruption. Moreover, an empirical equation, which is obtained from a series of tests, has been used to estimated the dielectric recovery strength. Un this paper, the theoretical method which is generated from the streamer theory has been applied to real circuit breakers in order to evaluated the interruption capability. The results of analysis have been compared with the test results and the reliability has been investigated.

  • PDF

H-브리지 인버터와 수퍼커패시터로 구성된 단상 DVR(Dynamic Voltage Restorer)의 개발 (Development of Single-Phase DVR(Dynamic Voltage Restorer) Composed of H-Bridge Inverter and SuperCapacitor)

  • 이동근;이두영;양승철;배병열;한병문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.160-161
    • /
    • 2007
  • This paper describes the development of a single-phase DVR(Dynamic voltage Restorer), which is composed of H-bridge inverter and super-capacitors. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with 3kVA prototype. The developed system can compensates the input voltage sag and interruption within 2ms, in which the maximum allowable duration of voltage interruption is 1.5 seconds. It can be effectively used to compensate the voltage interruption in the sensitive load, such as computer, communication equipment, automation equipment, and medical equipment. The developed system has a simple structure to be easily implemented with commercially available components and to be highly reliable in operation.

  • PDF

Unified Power Quality Conditioner for Compensating Voltage Interruption

  • Han, Byung-Moon;Cho, Bo-Hyung;Sul, Seung-Ki;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.503-512
    • /
    • 2006
  • This paper proposes a new configuration for the Unified Power Quality Conditioner, which has a DC/DC converter with super-capacitors for energy storage. The proposed UPQC can compensate the reactive power, harmonic current, voltage sag and swell, voltage imbalance, and voltage interruption. The performance of the proposed system was analyzed through simulations with PSCAD/EMTDC software. The feasibility of system implementation is confirmed through experimental works with a prototype. The proposed UPQC has ultimate capability to improve the power quality at the point of installation on power distribution systems and industrial power systems.