• Title/Summary/Keyword: Voltage Drive Circuit

Search Result 281, Processing Time 0.027 seconds

Sensorless Drive for Brushless DC Motor Using Simple Voltage Detecting Circuit (간단한 전압 검출 회로를 이용한 BLDC 전동기의 센서리스제어)

  • Go, Sung-Chul;Ahn, Joon-Seon;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1294-1296
    • /
    • 2005
  • Because of its cost effectiveness, the Brushless DC Motor(BLDCM) is focused by the industry these days. Considering the constant back-EMF region of the BLDCM, only a simple position information should be provided for constant torque control. From this point of view, using expensive position sensors, such as encoder, resolver, etc, decreases the cost effectiveness of the BLDCM. The Proposed detecting circuit detects position of zero crossing point(ZCP) then relative position could be calculated from ZCP. This circuit is robust to noise because of working in the current level. BLDCM is driven from the position information by the ZCP The reliability on BLDCM sensorless control using the voltage detecting circuit is shown through simulation using Matlab.

  • PDF

Integrated Thyristor Switch Structures for Capacitor Discharge Application

  • Kim, Eun-Dong;Zhang, Chang-Li;Kim, Sang-Cheol;Baek, Do-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.22-25
    • /
    • 2001
  • A thyristor switch circuit for capacitor discharge application, of which the equivalent circuit includes a resistor between cathode and gate of a reverse-conducting thyristor and an avalanche diode anti-parallel between its anode and gate to set thyristor tum-on voltage, is monolithically integrated by planar process with AVE double-implantation method. To ensure a lower breakdown voltage of the avalanche diode for thyristor tum-on than the break-over voltage of the thyristor, $p^+$ wells on thyristor p base layer are made by boron implantation/drive-in for a steeper doping profile with higher concentrations while rest p layers of thyristor and free-wheeling diode parts are formed with Al implantation/drive-in for a doping profile of lower steepness. The free-wheeling diode part is isolated from the thyristor part by formation of separated p-well emitter for suppressing commutation between them, which is achieved during the formation of thyristor p-base layer.

  • PDF

Development of High-Efficiency Drive System of DC Motors for Tracking Small-Size Electric Vehicles (소형전기자동차 견인용 직류전동기의 고효율 구동시스템 개발)

  • Duong, Thuy Lien;Tran, Thanh Vu;Chun, Tae-Won;Lee, Hong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1634-1640
    • /
    • 2012
  • This paper develops the high-efficiency drive system of the small-size electric vehicles (EVs) driven by the brushed dc motors. A power circuit for driving the dc motor is designed with the H-bridge circuit and buck converter by considering both the efficiency and cost. In order to change smoothly the rotating direction of dc motor driven by the proposed power circuit, an operating sequence for both the field current and the armature voltage according to an accelerator pedal angle is suggested. Through the simulation studies and experimental results with the low-cost 8-bit AVR, the performances of the proposed methods are verified.

A Study on Vacuum Circuit Breaker Driving Mechanism (전공차단기 구동 메카니즘 연구)

  • Kim, Chang-Wook;Kim, Jin-Soo;Jang, Yong-Gu;Lee, Sang-Hun;Choi, Myung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.804-806
    • /
    • 2003
  • In these days the Vacuum Circuit Breaker(VCB) is used in most medium voltage level because VCB has merits of simple structure, long life, free maintenance and environment friendly characteristics. Most of VCBs adopt mechanical spring drive mechanism to operate vacuum interrupter, but this mechanism is composed of many components and needs frequent maintenance works. In this paper, we study about the VCB drive mechanism with Permanent Magnet Actuator (PMA). Design methods and design flows about PMA are presented. The magnetic equivalent circuit is used for elementary and detailed design to determine the size of PMA. Finite Element Method (FEM) analysis is performed to evaluate the behavior characteristics of PMA in both static and transient state. Finally we manufacture sample PMA and verify FEM analysis through experiments.

  • PDF

A study on the multi-inverter drive that is including the voltage clamping circuit (Voltage Clamping 회로를 첨가한 다중 인버어터의 구동에 관한 연구)

  • Jung, Yeon-Tack;Han, Kyung-Hee;Whang, Lak-Hoon;Kim, Ki-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.124-126
    • /
    • 1988
  • The induction motor is constantly operated by general source, thus its speed control is employed an inverter system which can convert DC into AC. The CSI(Current Source Inverter) which have a commutation capacitor in its circuit is liable to cause a voltage spike that it is due to charge and discharge of commutation capacitor. And six phases inverter makes a number of harmonics. These have a effect upon the induction motor badly. This paper aims to suggest a way to reduce such adverse effects by maximally cutting the voltage spike as well as by eliminating a number of harmonics through the operation of Multi-HFCSI.

  • PDF

High precision Automatic Voltage Regulator by using series transformer (직렬 변압기를 이용한 고정밀 자동전압조절기)

  • Zhang, Lei;Lee, Hwa-Chun;Jung, Tae-Uk;Nam, Hae-Kon;Nam, Soon-Ryul;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.574-576
    • /
    • 2008
  • Now there are two types Non-contact compensation AC automatic voltage regulator (A.V.R). One is transformer compensation regulator, whose principle is the combination of multiple compensation transformers, do the compensation by turning on and off the connections of the transformer through the multi-full bridge circuit. This method removed the mechanical drive and contacts, which increases the life and the dynamic performance of the A.V.R. However, the compensation is multilevel, and it needs many compensation transformers and switches, the circuit is complex, the compensation precision is low. Another type is PWM switch AC regulator, whose principle is getting the AC voltage from the input, then induce the AC compensation voltage through commutating and high frequency PWM transforming, and phase tracking. Here the compensation is step-less, the compensation precision is high, and the response is fast. But the circuit is complex, and it needs an inverse compensation transformer, which is difficult to realize high-power applications. In this paper, it shows an Automatic Voltage Regulator which use high frequency PWM inverter do compensation. This A.V.R has the function as the custom-power, which make the performance of the power supply in a high level.

  • PDF

Implementation of Vector control for induction motor using the AC-AC matrix converter (교류-교류 행렬변환기를 이용한 유도전동기의 벡터제어 구현)

  • Kim, Woo-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.3-10
    • /
    • 2003
  • Application of matrix converter to vector control of induction motor using simplified Venturini algorithm which is capable of achieving the maximum output voltage is developed. This algorithm simplifies the control algorithm and therefor reduces the digital implementation time. Matrix converter is used as voltage-referenced voltage fed vector controlled induction motor drive. This paper describes the performance of vector controlled induction motor with four quadrant capability employing a matrix converter power circuit. The advantage of this system over the conventional rectifier-inverter arrangement are capability for regeneration into the utility, sinusoidal supply currents and minimum passive components. The steady-state and transient performance of the induction motor drive under the vector control technique is demonstrate with simulation and experiment results.

  • PDF

Control of Motor Drives Fed by PFC Circuits without DC-Link Electrolytic Capacitors

  • Kim, Kwang-Man;Kim, Eung-Ho;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1067-1074
    • /
    • 2018
  • This paper presents a control method for variable-speed motor drives that do not use a DC-link electrolytic capacitor. The proposed circuit consists of a power factor correction converter for boosting the DC-link voltage, an inverter for driving the motor, and a small DC-link film capacitor. By employing a small DC-link capacitor, the proposed circuit that is small, and a low cost and weight are achieved. However, because the DC-link voltage varies periodically, the control of the circuit is more difficult than that of the conventional method. Using the proposed control method, an inverter can be controlled reliably even when the capacitance of the DC-link capacitor is very small. Experiments are performed using a 1.5-kW inverter with a $20-{\mu}F$ DC-link capacitor, and the experimental results are analyzed thoroughly.

Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit

  • Amini, Mohammad Reza;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 2011
  • In this paper, a new soft switching three phase inverter with a quasi-resonant dc-link is presented. The proposed inverter has a dc-link switch and an auxiliary switch. The inverter switches are turned on and off under zero voltage switching condition and all auxiliary circuit switches and diodes are also soft switched. The control utilizes PWM and the auxiliary switch does not require an isolated gate drive circuit. In this paper, the operation analysis and design considerations of the proposed soft switching inverter are discussed. The presented experimental results of a realized prototype confirm the theoretical analysis.

Ultra-High Resolution and Large Size Organic Light Emitting Diode Panels with Highly Reliable Gate Driver Circuits

  • Hong Jae Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • Large-size, organic light-emitting device (OLED) panels based on highly reliable gate driver circuits integrated using InGaZnO thin film transistors (TFTs) were developed to achieve ultra-high resolution TVs. These large-size OLED panels were driven by using a novel gate driver circuit not only for displaying images but also for sensing TFT characteristics for external compensation. Regardless of the negative threshold voltage of the TFTs, the proposed gate driver circuit in OLED panels functioned precisely, resulting from a decrease in the leakage current. The falling time of the circuit is approximately 0.9 ㎲, which is fast enough to drive 8K resolution OLED displays at 120 Hz. 120 Hz is most commonly used as the operating voltage because images consisting of 120 frames per second can be quickly shown on the display panel without any image sticking. The reliability tests showed that the lifetime of the proposed integrated gate driver is at least 100,000 h.