• Title/Summary/Keyword: Voltage Drive Circuit

Search Result 281, Processing Time 0.029 seconds

Proper excitation voltage and fixed switching angle control scheme for SRM drive (SMR구동을 위한 적정여자전압 고정스위칭각 제어방식)

  • 안영주;안진우;조철제;황영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.54-59
    • /
    • 1996
  • As the current shape of SRM is of pulse type and changed by the motor parameters and drive conditions, the influences on the drive efficiency by control method are more than other types of motors. In this paper, a proper excitation condition to drive a SRM with high efficiency is proposed and tested. It is derived from the conditions that the phase current of a SRM is to be flat-topped at various drive. The saturation effect of magnetic circuit is accounted for more accurate analysis. Experimental tests are executed to verify the proposed excitation method. This drive system is easy to commutate and also advantageous in reducing torque ripple. (author). 6 refs., 10 figs., 1 tab.

  • PDF

Driving technologies for AMOLEDs

  • Matsueda, Yojiro;Kim, Hong-Kwon;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.393-398
    • /
    • 2006
  • This paper classifies driving technologies for AMOLEDs by the driving TFT conditions in pixels. A saturation region operation type driving TFT circuit provides good stability of OLED because of constant current drive. However, complicated compensation circuits are necessary to avoid effect of the TFT characteristics deviation. On the other hand, a linear region operation type driving TFT circuit provides better uniformity of the display image and lower power consumption. However, the stability of OLED is critical because of constant voltage drive.

  • PDF

Improved Single-Stage AC-DC LED-Drive Flyback Converter using the Transformer-Coupled Lossless Snubber

  • Jeong, Gang-Youl;Kwon, Su-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.644-652
    • /
    • 2016
  • This paper presents an improved single-stage ac-dc LED-drive flyback converter using the transformer-coupled lossless (TCL) snubber. The proposed converter is derived from the integration of a full-bridge diode rectifier and a conventional flyback converter with a simple TCL snubber. The TCL snubber circuit is composed of only two diodes, a capacitor, and a transformer-coupled auxiliary winding. The TCL snubber limits the surge voltage of the switch and regenerates the energy stored in the leakage inductance of the transformer. Also, the switch of the proposed converter is turned on at a minimum voltage using a formed resonant circuit. Thus, the proposed converter achieves high efficiency. The proposed converter utilizes only one general power factor correction (PFC) control IC as its controller and performs both PFC and output power regulation, simultaneously. Therefore, the proposed converter provides a simple structure and an economic implementation and achieves a high power factor without the need for any separate PFC circuit. In this paper, the operational principle of the proposed converter is explained in detail and the design guideline of the proposed converter is briefly shown. Experimental results for a 40-W prototype are shown to validate the performance of the proposed converter.

A study on the switching character of MOS-GTO and the design of gate drive circuit (MOS-GTO의 스위칭 특성과 Gate Drive 회로 설계에 관한 연구)

  • Roh, Jin-Eep;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.231-233
    • /
    • 1991
  • This paper discribes a study on the switching character of MOS-GTO and the design of gate drive circuit. Chopping power supply converter, synchronious and asyncronious motor speed adjustment, inverter, etc., needs low drive energy "high frequency" switches. To fulfill these need, switches must have rapid switching time and insulated gate control. MOS-GTO structure is well suited to these constraints. The power switch is serial installation of a GTO thyrister and a MOS Transistor. The gate of the GTO is linked to positive pole of the cascode structure via a MOS high voltage transistor and ground via a transient absorber diode. This high performance MOS-GTO assembly considerably increases the strength which facilitate the drive of GTO thyristers.

  • PDF

An Improved Gate Control Scheme for Overvoltage Clamping Under High Power IGBTs Switching (대용량 IGBT 스위칭 시 과전압 제한을 위한 향상된 게이트 구동기법)

  • 김완중;최창호;이요한;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.222-230
    • /
    • 1998
  • This paper proposes a new gate drive circuit for high power IGBTs which can reduce the harmful effect of reverse recovery current at turn-on and actively suppress the overvoltage across the driven IGBT at turn-off without a snubber circuit. The turn-on scheme decreases the rising rate of the collector current by inereasing the input capacitance at turn-on transient when the gate-emitter voltage goes above threshold voltage. It results in soft transient of the reverse recovery current with no variation in turn-on delay time. The turn-off driving scheme has adaptive feature to the amplitude of collector current, so that the overvoltage can be limited much effectively at the fault collector current. Experimental results under various normal and fault conditions prove the effectiveness of the proposed circuit.

  • PDF

Improved Gate Drive Circuit for High Power IGBTs with a Novel Overvoltage Protection Scheme (과전압 제한 기능을 갖는 새로운 IGBT 게이트 구동회로)

  • Lee, Hwang-Geol;Lee, Yo-Han;Suh, Bum-Seok;Hyun, Dong-Seok;Lee, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.346-349
    • /
    • 1996
  • In application of high power IGBT PWM inverters, the treatable power range is considerably limited due to the overvoltage caused by the stray inductance components within the power circuit. This paper proposes a new gate drive circuit for IGBTs which can actively suppress the overvoltage across the driven IGBT at turn-off and the overvoltage across the opposite IGBT at turn-on while preserving the most simple and reliable power circuit. The turn-off driving scheme has adaptive feature to the amplitude of collector current, so that the overvoltage is limited much effectively at the larger collector current. The turn-on scheme is to decrease the rising rate of the collector current by increasing input capacitance during turn-on transient when the gate-emitter voltage is greater than threshold voltage. The experimental results under various normal and fault conditions prove the effectiveness of the proposed circuit.

  • PDF

A Study on Characteristics and Driving Techniques of Energy Recovery Type Inverter for Piezo Actuator Drive (피에조 액츄에이터 구동용 에너지 회수형 인버터의 특성과 구동 기법 연구)

  • Hong, Sun-Ki;Lee, Jung-Seop;Byeon, Nam-Hee;Na, Yoo-Cheong;Kang, Tae-Sam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1095-1100
    • /
    • 2013
  • Piezo devices have large power density and simple structure compared with conventional electrical motors. Thus they can generate larger forces than the conventional actuators with small size. Their resopnses to commands are also very fast and thus the bandwidths are very wide. Thus the piezo devices are expected to be used widely in the future for actuating devices requiring fast response and large actuating force with small size. However, the piezo actuators need high voltage with high driving current due to their large capacitive property. In this paper, proposed is a simple method to drive piezo devices using voltage inversion circuit with coli inductance. The coil inductance carries the charges in the piezo device to the opposite side, inverting the polarity of the applied voltage, thus saving the power to drive the device with AC voltages. Experiments with real circuit demonstrates that the proposed scheme can improve the energy efficiency very much.

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

Design of High Voltage Gate Driver IC with Minimum Change and Variable Characteristic of Dead Time (최소 변동 및 가변 데드 타임을 갖는 고전압 구동 IC 설계)

  • Mun, Kyeong-Su;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Cho, Hyo-Mun;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.58-65
    • /
    • 2009
  • In this paper, we designed high voltage gate drive IC including dead time circuit in which capacitors controlled rising time and falling time, and schimitt-triggers controlled switching voltage. Designed High voltage gate drive IC improves an efficiency of half-bridge converter by decreasing dead time variation against temperature and has variable dead time by the capacitor value. and its power dissipation, which is generated on high side part level shifter, has decreased 52 percent by short pulse generation circuit, and UVLO circuit is designed to prevent false-operation. We simulated by using Spectre of Cadence to verify the proposed circuit and fabricated in a 1.0um process.

A Driving Scheme Using a Single Control Signal for a ZVT Voltage Driven Synchronous Buck Converter

  • Asghari, Amin;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • This paper deals with the optimization of the driving techniques for the ZVT synchronous buck converter proposed in [1]. Two new gate drive circuits are proposed to allow this converter to operate by only one control signal as a 12V voltage regulator module (VRM). Voltage-driven method is applied for the synchronous rectifier. In addition, the control signal drives the main and auxiliary switches by one driving circuit. Both of the circuits are supplied by the input voltage. As a result, no supply voltage is required. This approach decreases both the complexity and cost in converter hardware implementation and is suitable for practical applications. In addition, the proposed SR driving scheme can also be used for many high frequency resonant converters and some high frequency discontinuous current mode PWM circuits. The ZVT synchronous buck converter with new gate drive circuits is analyzed and the presented experimental results confirm the theoretical analysis.