• Title/Summary/Keyword: Voltage Divider

Search Result 142, Processing Time 0.023 seconds

Capacitive Voltage Divide for a Pulsed High-Voltage Measurement (펄스형 고전압 측정용 용량성 분압기)

  • Jang Sung-Duck;Son Yoon-Kyoo;Kwon Sei-Jin;Oh Jong-Seok;Cho Moo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.63-68
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source are under operation for 2.5 GeV electron linear accelerator in Pohang Light Source (PLS) linac. The klystron-modulator system has an important role for the stable operation to improve an availability statistics of overall system performance of klystron-modulator system. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are demanded for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider (CVD), which divides input voltage as capacitance ratio, is intended for the measurement of a beam voltage of 400 kV generated from the klystron-modulator system. Main parameter to determine standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will be present and discuss the design concept and analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance effects and oil temperature variation.

Review of the tracebility of impulse voltage measuring system in test laboratory (시험소 충격전압 측정시스템의 소급성검토)

  • Heo, J.C.;Choi, I.S.;Jeong, J.Y.;Ban, S.G.;Park, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1632-1634
    • /
    • 2003
  • For lihgtning and switching impulse voltage performances in laboratories, impulse voltage measuring system, which is consisted of voltage divider, recording instrument and connecting system between divider and recording instrument, is used. In order to show reliability of test result in test laboratory, tracebility of these measuring system to be using in test laboratory is needed. In this paper, we describe tracebility and uncertainty of impulse voltage measuring system in test laboratory.

  • PDF

The study of test voltage measuring system for high-power testing laboratory (대전력 시험전압 측정방법에 대한 고찰)

  • Roh, Chang-Il;La, Dae-Ryeol;Kim, Sun-Koo;Jung, Heung-Soo;Kim, Won-Man;Lee, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1038-1040
    • /
    • 2005
  • This paper describes the optimal design, construction and performance evaluation of voltage divider used in high power testing laboratory for voltage measuring system. These dividers, which are of R, C, R&C type voltage dividers, the voltage to be measured range from voltage to several ten kilovolts, the frequency of the signals has a bandwidth from DC to megaHertz Measuring transient voltage and currents in the high voltage power laboratory is generally accompanied by electromagnetic interface and induced noise. above all, the measuring capabilities of voltage measuring system are dependent upon short response time and it must be as free as possible of inductive effects. In this paper presents both characteristic of voltage divider and design of voltage measuring system.

  • PDF

An Unequal Power Divider with Adjustable Dividing Ratio (가변 분배 비율 비대칭 전력 분배기)

  • Lim, Jong-Sik;Oh, Seong-Min;Koo, Jae-Jin;Jeong, Yong-Chae;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.478-485
    • /
    • 2007
  • In this paper, an unequal 1:N Wilkinson power divider with adjustable dividing ratio is proposed. The proposed unequal power divider is composed of basic Wilkinson structure. It consists of rectangular-shaped defected ground structure (DGS), isolated island pattern in DGS, and varactor diodes of which capacitance depends on bias voltage. The characteristic impedance value of microstrip line having DGS goes up and down by controlling bias voltage for diodes, and consequently the power dividing ratio(N) is adjusted. The obtained N from measurement is $2.59{\sim}10.4$ which mean the proposed divider has adjustable unequal dividing ratio.

A 90-nm CMOS 144 GHz Injection Locked Frequency Divider with Inductive Feedback

  • Seo, Hyo-Gi;Seo, Seung-Woo;Yun, Jong-Won;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.190-197
    • /
    • 2011
  • This paper presents a 144 GHz divide-by-2 injection locked frequency divider (ILFD) with inductive feedback developed in a commercial 90-nm Si RFCMOS technology. It was demonstrated that division-by-2 operation is achieved with input power down to -12 dBm, with measured locking range of 0.96 GHz (144.18 - 145.14 GHz) at input power of -3 dBm. To the authors' best knowledge, this is the highest operation frequency for ILFD based on a 90-nm CMOS technology. From supply voltage of 1.8 V, the circuit draws 5.7 mA including both core and buffer. The fabricated chip occupies 0.54 mm ${\times}$ 0.69 mm including the DC and RF pads.

Efficiency Measurement of a Receiver for 5.8GHz Microwave Smartphone Charging (5.8GHz 마이크로파 스마트폰 충전을 위한 수신기의 효율측정)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.22-26
    • /
    • 2016
  • In this paper, we measured the efficiency of the receiver for 5.8GHz Microwave Smartphone Charging. We have designed and fabricated 1W and 2W power amplifier, respectively. A 1W power amplifier used a TC3531 power device of TRANSCOM Inc. In addition, a 2W power amplifier using the two TC3531 devices was constructed with divider and combiner. We used the Wilkinson divider theory for divider and combiner. The voltage was measured using the 1W and 2W power amplifier and integrated receivers to the distance of 50cm.

Design of Frequency Synthesizer using Novel Architecture Programmable Frequency Divider (새로운 구조의 프로그램어블 주파수 분주기를 사용한 주파수 합성기 설계)

  • 김태엽;박수양;손상희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.500-505
    • /
    • 2002
  • In this paper, a novel architecture of programmable divider with fifty percent duty cycle output and programmable dividing number has been proposed. Through HSPICE simulation, a 900MHz frequency synthesizer with proposed frequency divider has designed in a standard 0.25$\mu\textrm{m}$ CMOS technology. To verify the operation of proposed frequency divider, a chip had been fabricated using 0.65$\mu\textrm{m}$ 2-poly, 3-metal standard CMOS processing and experimental result shows that the proposed frequency divider works well. The designed voltage controlled oscillator(VCO) has a center frequency of 900MHz, a tuning range of ${\pm}$10%, and a gain of 154MHz/V. The simulated frequency synthesizer performance has a settling time of 1.5${\mu}\textrm{s}$, a frequency range from 820MHz to 1GHz and power consumption of 70mW at 2.5V power supply voltage.

A Parallel Coupled QVCO and Differential Injection-Locked Frequency Divider in 0.13 μm CMOS

  • Park, Bong-Hyuk;Lee, Kwang-Chun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.35-38
    • /
    • 2010
  • A fully integrated parallel-coupled 6-GHz quadrature voltage-controlled oscillator (QVCO) has been designed. The symmetrical parallel-coupled quadrature VCO is implemented using 0.13-${\mu}m$ CMOS process. The measured phase noise is -101.05 dBc/Hz at an offset frequency of 1 MHz. The tuning range of 710 MHz is achieved with a control voltage ranging from 0.3 to 1.4 V. The average output phase error is about $1.26^{\circ}$ including cables and connectors. The QVCO dissipates 10 mA including buffer from the 1.5 V supply voltage. The output characteristic of the differential injection-locked frequency divider (DILFD), which has similar topology to the QVCO, is presented.

The Study on CMA using field terminator (Field terminator를 이용한 CMA 제작에 관한 연구)

  • 이충만;성면창;권순남;정광호
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.278-283
    • /
    • 1996
  • We constructed a single path cylindrical mirror analyser(CMA) using field terminator methods. With computer simulation, the best fit voltage ratio and position of the field terminaor was determined with maintain log-scale equipotential line near both end of the CMA. Then we construct field terminator with voltage divider of metal-oxide resisters which reduces the fringe field effect. The resolving power of the CMA was better than $\Delta$E/E=0.4%.

  • PDF