• 제목/요약/키워드: Voltage Control

검색결과 6,842건 처리시간 0.03초

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • 제5권1호
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

Synchronous PI Decoupling Control Scheme for DVR against a Voltage Sag in the Power System

  • Kim, Myung-Bok;Lee, Seung-Hoon;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.180-187
    • /
    • 2004
  • This paper proposes a new control strategy for the dynamic voltage restorer (DVR). It is based on a synchronous PI decoupling control strategy which features fast response time and low steady state error. Therefore, the proposed control strategy produces faster action time against voltage sag and guarantees more than enough compensation for reduced supply voltage. Experimental results, implemented with the TMS320C3${\times}$DSP control unit, are shown to validate the effectiveness of the proposed control strategy.

A Current Sharing Circuit for the Parallel Inverter

  • Lee, Chang-Seok;Kim, Si-Kyung
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.176-181
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employs active and reactive power control of frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel-connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employees an instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Furthermore, the proposed control scheme is verified through the experiment in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

전압센서를 사용하지 않는 계통연계 인버터의 제어 및 위상지연을 개선한 계통전압 추정 기법 (Grid Voltage Estimation Scheme without Phase Delay in Voltage-sensorless Control of a Grid-connected Inverter)

  • 김현수;김경화
    • 전력전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.89-93
    • /
    • 2017
  • This study proposes a grid voltage estimation scheme without a phase delay in the voltage-sensorless control of a grid-connected inverter to enhance its economic feasibility, such as manufacturing cost and system complexity. The proposed scheme estimates grid voltages using a disturbance observer (DOB)-based current controller to control the grid-connected inverter without grid-side voltage sensors. The proposed voltage-sensorless control scheme can be applied successfully to grid-connected inverters, which should be operated with synchronization to the grid, considering the phase angle of the grid can be effectively detected through estimating the grid voltages by DOB. However, a problem associated with the phase delay in estimated grid voltages remains because the DOB has dynamic behavior similar to low-pass filter. Hence, the estimated grid voltages are compensated by a phase lead compensator to overcome the limitation. The effectiveness of the proposed control and estimation schemes is proven through simulations and experiments using a 2 kVA prototype inverter.

전원 전압 왜곡과 주파수 변동 시 단상 PWM 컨버터의 전류 제어 (Current Control of a Single-phase PWM Converter under the Distorted Source Voltage and Frequency Condition)

  • 안창헌;김상훈
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.356-362
    • /
    • 2015
  • This paper presents a current control strategy in the synchronous reference frame for a single-phase PWM converter, which ensures sinusoidal input current control under the distorted source voltage and frequency condition. Given that the distorted source voltage distorts the phase angle for PWM converter control, the input current contains the same harmonics as the source voltage. Aside from the distorted voltage, the variation in source frequency reduces the performance of input current control. To achieve sinusoidal input current control under the distorted source voltage and frequency condition, this paper proposes a compensation strategy of current reference with the distortion component extracted from the phase angle and a detection strategy of frequency variation from the output of a synchronous reference frame phase-lock loop. The experimental results confirm the validity of the proposed method under the distorted source voltage and frequency condition.

Fault Tolerant Control of DC-Link Voltage Sensor for Three-Phase AC/DC/AC PWM Converters

  • Kim, Soo-Cheol;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Kyo-Beum;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.695-703
    • /
    • 2014
  • In this paper, a fault detection scheme for DC-link voltage sensor and its fault tolerant control strategy for three-phase AC/DC/AC PWM converters are proposed, where the Luenberger observer is applied to estimate the DC-link voltage. The Luenberger observer is based on a converter model, which is derived from the voltage equations of a grid-side converter and the power balance on a DC link. A fault of the voltage sensor is detected by comparing the measured value of the DC-link voltage with the estimated one. When a sensor fault is detected, a fault tolerant control strategy is performed, where the estimated DC-link voltage is used for the feedback control. The estimation error from the observer is about 1.5 V, which is sufficiently accurate for feedback control. In addition, it is shown that the observer performance is robust to parameter variations of the converter. The validity of the proposed method has been verified by simulation and experimental results.

비대칭 전압 제어를 이용한 단상 임베디드 Z-소스 DC-AC 인버터 (A Single-Phase Embedded Z-Source DC-AC Inverter by Asymmetric Voltage Control)

  • 오승열;김세진;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.306-314
    • /
    • 2012
  • In case of the conventional DC-AC inverter using two DC-DC converters with unipolar output capacitor voltages, for generating the AC output voltage, the output capacitor voltages of its each DC-DC converter must be higher than the DC input voltage. To solve this problem, this paper proposes a single-phase DC-AC inverter using two embedded Z-source converters with bipolar output capacitor voltages. The proposed inverter is composed of two embedded Z-source converters with common DC source and output AC load. The AC output voltage is obtained by the difference of the output capacitor voltages of each converter. Though the output capacitor voltage of converter is relatively low compared to the conventional method, it can be obtained the same AC output voltage. Moreover, by controlling asymmetrically the output capacitor voltage, the AC output voltage of the proposed system is higher than the DC input voltage. To verify the validity of the proposed system, a DSP(TMS320F28335) based single-phase embedded Z-source DC-AC inverter was made and the PSIM simulation was performed under the condition of the DC source 38V. As controlled symmetrically and asymmetrically the output capacitor voltages of each converter, the proposed inverter could produce the AC output voltage with sinusoidal waveform. Particularly, in case of asymmetric control, a higher AC output voltage was obtained. Finally, the efficiency of the proposed system was measured as 95% and 97% respectively in case of symmetric and asymmetric control.

Coordinated Voltage and Reactive Power Control Strategy with Distributed Generator for Improving the Operational Efficiency

  • Jeong, Ki-Seok;Lee, Hyun-Chul;Baek, Young-Sik;Park, Ji-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1261-1268
    • /
    • 2013
  • This study proposes a voltage and reactive coordinative control strategy with distributed generator (DG) in a distribution power system. The aim is to determine the optimum dispatch schedules for an on-load tap changer (OLTC), distributed generator settings and all shunt capacitor switching on the load and DG generation profile in a day. The proposed method minimizes the real power losses and improves the voltage profile using squared deviations of bus voltages. The results indicate that the proposed method reduces the real losses and voltage fluctuations and improve receiving power factor. This paper proposes coordinated voltage and reactive power control methods that adjust optimal control values of capacitor banks, OLTC, and the AVR of DGs by using a voltage sensitivity factor (VSF) and dynamic programming (DP) with branch-and-bound (B&B) method. To avoid the computational burden, we try to limit the possible states to 24 stages by using a flexible searching space at each stage. Finally, we will show the effectiveness of the proposed method by using operational cost of real power losses and voltage deviation factor as evaluation index for a whole day in a power system with distributed generators.

단상 센서리스 PFC 컨버터의 직류출력전압 제어에 관한 연구 (A Study on DC output voltage control of single-phase senseless PFC converter)

  • 문상필;강욱중;권순걸;서기영
    • 조명전기설비학회논문지
    • /
    • 제17권2호
    • /
    • pp.58-65
    • /
    • 2003
  • 일반적인 단상 PFC 컨버터는 직류전압을 일정한 기준값으로 제어할 수 있으나 시스템의 구성상 직류전압과 교류전압 및 전류등을 검출하여 제어하기 때문에 전체적으로 제어 시스템이 복잡하고, 가격이 비싸며, 신속성등의 문제점들이 대두되어지고 있다. 이러한 문제점들을 해결하기 위하여 본 논문에서는 센서리스 PFC 컨버터 회로를 제안하여 교류 전압파형 검출만으로 전체 시스템을 간단하게 제어하였다. 그리고 초퍼회로에서 제어된 전압량 Kd(Ed/Ea)에 의해서 직류출력전압을 직접적으로 제어하였으며, 직류출력전압의 변동율이 회로의 파라미터에 따른 변화의 특징에 대해서 서술하였다. 이러한 모든 사항아느 실험을 통하여 타당성을 증명하였다.

능동형 전압제어를 통한 교류 전기철도 급전망에 대한 전력손실 분석 (A Power Losses Analysis of AC Railway Power Feeding Network using Adaptive Voltage Control)

  • 정호성;김형철;신승권;김진호;윤기용;조용현
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1621-1627
    • /
    • 2013
  • This paper compares power losses between voltage controlled before and after using power conversion device in AC feeding system. For this purpose we present voltage control procedures and criteria and model high speed line and train using PSCAD/EMTDC to compare power losses in various feeding condition. Power losses of the simulation result in power control before and after in single point feeding system was reduced maximum 0.37 MW(23.8 %) and average 0.23 MW(20.5 %) when one vehicle load operates maximum load condition. When three vehicles operate maximum load condition in one feeder section, power losses after voltage control was reduced 1.03 MW(49.5%) compared to before voltage control. And, power loss of parallel feeding system is reduced the average 0.08 MW(7.2 %) compared to the single feeding system. In conclusion, adaptive voltage control method using power conversion device can reduce power losses compared with existing method.