• Title/Summary/Keyword: Voltage Boost Ability

Search Result 22, Processing Time 0.027 seconds

A Study on the Output Voltage Characteristic of Switched Trans Z-Source Inverter (스위치드 변압기 Z-소스 인버터의 출력전압 특성에 관한 연구)

  • Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • This paper proposes the switched trans Z-source inverter(STZSI) which combined the characteristics of the trans Z-source inverter(TZSI) and the switched inductor Z-source inverter(SLZSI). The proposed STZSI has the same performance compared with the SLZSI which is improved the voltage boost performance of the conventional typical X-shaped ZSI, and it has advantage that circuit structure of Z-impedance network is more simple. And, in order to step up the voltage boost factor under the condition of the same duty ratio, unlike the SLZSI adding the inductors and diodes, the proposed method is dune by changing the turn ratio of trans primary winding of Z-impedance network. To confirm the validity of the proposed method, PSIM simulation and a DSP(TMS320F28335) based experiment were performed using trans with turn ratio 1 and 2 under the condition of the input DC voltage VI=50V, duty ratio D=0.1 and D=0.15. As a result, under the same input/ouput condition, the inverter arm voltage stress of the proposed method is reduced to about 15%-22% as compared with typical X-shaped ZSI, and the elements in Z-impedance network of the proposed method is reduced as compared with the SLZSI.

Design and Control of Modified Switched Inductor-ZSI (변형 SL-ZSI의 설계 및 제어)

  • Vu, Ho-Anh;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.105-106
    • /
    • 2013
  • This paper proposes a new topology with active switched-capacitor and switched-inductor impedance network, which can obtain a high boost factor with small shoot-through time. The proposed topology uses an active switched capacitor and switched-inductor impedance network in order to couple the main circuit and input dc source for boosting the output voltage. The proposed topology contains all advantages of the classical Z-source inverter. Comparing with other topologies, the proposed topology uses lesser component and the voltage boost inversion ability significantly increases. The theoretical analysis, pulse width modulation control strategies, and a comparison with classical ZSI have been given in this paper. Both simulation and experimental results will be presented to verify the advantages of the proposed topology.

  • PDF

Isolated Boost Converter with Bidirectional Operation for Supercapacitor Applications

  • Hernandez, Juan C.;Mira, Maria C.;Sen, Gokhan;Thomsen, Ole C.;Andersen, Michael A.E.
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.507-515
    • /
    • 2013
  • This paper presents an isolated bidirectional dc/dc converter based on primary parallel isolated boost converter (PPIBC). This topology is an efficient solution in low voltage high power applications due to its ability to handle high currents in the low voltage side. In this paper, the converter has been modeled using non-ideal components and operated without any additional circuitry for startup using a digital soft-start procedure. Simulated and measured loop gains have been compared for the validity of the model. On-the-fly current direction change has been achieved with a prototype interconnecting two battery banks. A second prototype has been constructed and tested for supercapacitor operation in constant power charge mode.

A Single-Phase Hybrid Multi-Level Converter with Less Number of Components

  • Kim, Ki-Mok;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.105-107
    • /
    • 2018
  • This paper presents a new hybrid multilevel converter topology, which consists of a combination of the series connected switched capacitor units with boost ability, and an H-bridge with T-type bidirectional switches. The proposed converter boosts the input voltage without any bulky inductors, and has the small number of components, which can make the size and cost of a power converter greatly reduced. The output filter size and harmonics are also reduced by the high quality multilevel output. In addition, there is no need for complicated methods to balance the capacitor voltage. Simulation and experimental results with a nine-level converter system are presented to validate the proposed topology and modulation method.

  • PDF

A Study On High Power Factor Sine Pulse Type Power Supply For Atmospheric Pressure Plasma Cleaning System with 3-Phase PFC Boost Converter (3상 PFC 부스트 컨버터를 채용한 상압플라즈마 세정기용 고역률 정형파 펄스 출력형 전원장치에 관한 연구)

  • Han, Hee-Min;Kim, Min-Young;Seo, Kwang-Duk;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents quasi-resonant type high power factor ac power supply for atmospheric pressure plasma cleaning system adopting three phase PFC boost converter and it's control method. The presented ac power supply consists of single phase H-bridge inverter, step-up transformer for generating high voltage and three phase PFC boost converter for high power factor on source utility. Unlikely to the traditional LC resonant converter, the propose one has an inductor inside only. A single resonant takes place through the inside inductor and the capacitor from the plasma load modeled into two series capacitor and one resistance. The quasi-resonant can be achieved by cutting the switching signal when the load current decrease to zero. To obtain power control ability, the propose converter controlled by two control schemes. One is the changing output pulse period scheme in the manner of PFM(Pulse Frequency Modulation) control. On the other, to provide more higher power to load, the DC rail voltage is directly controlled by the 3-phase PFC boost converter. The significant merits of the proposed converter are the uniform power providing capability for high quality plasma generation and low reactive power in AC and DC side. The proposed work is verified through digital simulation and experimental implementation.

Neutral-point Potential Balancing Method for Switched-Inductor Z-Source Three-level Inverter

  • Wang, Xiaogang;Zhang, Jie
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1203-1210
    • /
    • 2017
  • Switched-inductor (SL) Z-source three-level inverter is a novel high power topology. The SL based impedance network can boost the input dc voltage to a higher value than the single LC impedance network. However, as all the neutral-point-clamped (NPC) inverters, the SL Z-source three-level inverter has to balance the neutral-point (NP) potential too. The principle of the inverter is introduced and then the effects of NP potential unbalance are analyzed. A NP balancing method is proposed. Other than the methods for conventional NPC inverter without Z-source impedance network, the upper and lower shoot-through durations are corrected by the feedforward compensation factors. With the proposed method, the NP potential is balanced and the voltage boosting ability of the Z-source network is not affected obviously. Simulations are conducted to verify the proposed method.

Dual-Coupled Inductor High Gain DC/DC Converter with Ripple Absorption Circuit

  • Yang, Jie;Yu, Dongsheng;Alkahtani, Mohammed;Yuan, Ligen;Zhou, Zhi;Zhu, Hong;Chiemeka, Maxwell
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1366-1379
    • /
    • 2019
  • High-gain DC/DC converters have become one of the key technologies for the grid-connected operation of new energy power generation, and its research provides a significant impetus for the rapid development of new energy power generation. Inspired by the transformer effect and the ripple-suppressed ability of a coupled inductor, a double-coupled inductor high gain DC/DC converter with a ripple absorption circuit is proposed in this paper. By integrating the diode-capacitor voltage multiplying unit into the quadratic Boost converter and assembling the independent inductor into the magnetic core of structure coupled inductors, the adjustable range of the voltage gain can be effectively extended and the limit on duty ratio can be avoided. In addition, the volume of the magnetic element can be reduced. Very small ripples of input current can be obtained by the ripple absorption circuit, which is composed of an auxiliary inductor and a capacitor. The leakage inductance loss can be recovered to the load in a switching period, and the switching-off voltage spikes caused by leakage inductance can be suppressed by absorption in the diode-capacitor voltage multiplying unit. On the basis of the theoretical analysis, the feasibility of the proposed converter is verified by test results obtained by simulations and an experimental prototype.

PWM Variable Carrier Generating Method for OEW PMSM with Dual Inverter and Current Ripple Analysis according to Zero Vector Position (듀얼 인버터 개방 권선형 영구자석 동기 전동기 제어를 위한 PWM 가변 캐리어 생성법 및 영벡터 위치에 따른 전류 리플 분석)

  • Shim, Jae-Hoon;Choi, Hyeon-Gyu;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.279-285
    • /
    • 2020
  • An open-end winding (OEW) permanent magnet synchronous motor with dual inverters can synthesize large voltages for a motor with the same DC link voltage. This ability has the advantage of reducing the use of DC/DC boost converters or high voltage batteries. However, zero-sequence voltage (ZSV), which is caused by the difference in the combined voltage between the primary and secondary inverters, can generate a zero-sequence current (ZSC) that increases system losses. Among the methods for eliminating this phenomenon, combining voltage vector eliminated ZSV cannot be accomplished by the conventional Pulse Width Modulation(PWM) method. In this study, a PWM carrier generation method using functionalization to generate a switching pattern to suppress ZSC is proposed and applied to analyze the control influence of the center-zero vector in the switching sequence about the current ripple.

New Bidirectional ZVS PWM Sepic/Zeta DC-DC Converter (새로운 양방향 ZVS PWM Sepic/Zeta DC-DC 컨버터)

  • Kim, In-Dong;Paeng, Seong-Hwan;Park, Sung-Dae;Nho, Eui-Cheol;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.301-310
    • /
    • 2007
  • Bidirectional DC-DC converters allow transfer of power between two dc sources, in either direction. Due to their ability to reverse the direction of flow of power, Dey are being increasingly used in many applications such as battery charge/dischargers, do uninterruptible power supplies, electrical vehicle motor drives, aerospace power systems, telecom power supplies, etc. This Paper Proposes a new bidirectional Sepic/Zeta converter. It has low switching loss and low conduction loss due to auxiliary communicated circuit and synchronous rectifier operation, respectively Because of positive and buck/boost-like DC voltage transfer function(M=D/1-D), the proposed converter is very desirable for use in distributed power system. The proposed converter also has both transformer-less version and transformer one.

An Efficient and High-gain Inverter Based on The 3S Inverter Employs Model Predictive Control for PV Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Junnosuke, Haruna
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1484-1494
    • /
    • 2017
  • We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.