• Title/Summary/Keyword: Volcano deposits

Search Result 24, Processing Time 0.029 seconds

Time-series Analysis of Pyroclastic Flow Deposit and Surface Temperature at Merapi Volcano in Indonesia Using Landsat TM and ETM+ (Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석)

  • Cho, Minji;Lu, Zhong;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.443-459
    • /
    • 2013
  • Located on Java subduction zone, Merapi volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Merapi's eruptions were relatively small with VEI 1-3. However, the most recent eruption occurred in 2010 was quite violent with VEI 4 and 386 people were killed. In this study, we have attempted to study the characteristics of Merapi's eruptions during 18 years using optical Landsat images. We have collected a total of 55 Landsat images acquired from July 6, 1994 to September 1, 2012 to identify pyroclastic flows and their temporal changes from false color images. To extract areal extents of pyroclastic flows, we have performed supervised classification after atmospheric correction by using COST model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the CVP monthly reports. We have converted the thermal band of Landsat TM and ETM+ to the surface temperature using NASA empirical formula and calculated time-series of the mean surface temperature in the area of peak temperature surrounding the crater. The mean surface temperature around the crater repeatedly showed the tendency to rapidly rise before eruptions and cool down after eruptions. Although Landsat satellite images had some limitations due to weather conditions, these images were useful tool to observe the precursor changes in surface temperature before eruptions and map the pyroclastic flow deposits after eruptions at Merapi volcano.

Geology and Volcanism of Hyeongjeseom (Islet) Volcano, Jeju Island (제주도 형제섬 화산체의 지질과 화산활동)

  • Park, Jun Beom;Koh, Gi Won;Jeon, Yongmun;Park, Won Bae;Moon, Soo Hyoung;Moon, Deok Cheol
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • The Hyeongjeseom (Islet) is an erosional remnant of volcano which is located about 2 km northeast of sea shore of the Songaksan tuff ring, and is composed of volcaniclastic deposit, agglomerate and scoria deposit, ponded lava, aa lava flows, reworked deposit and beach deposit in ascending order from the base. The volcano is formed by volcaniclastic deposits and lava flows that recorded a transition from initial phreatomagmatic to magmatic explosions followed by lava effusion. It is interpreted that the outcropped volcaniclastic deposit may be a remaining portion of outer ring of a tuff cone. A bomb and a ponded lava yield geochemically basaltic trachyandesite compositions (SiO2 51.3 wt%, Na2O+K2O 6.0 wt%) and belong to olivine basalt with scarce (<5 %) phenocrysts of olivine, petrographically. By incremental heating Ar-Ar dating method, the plateau age of lava flow in the Heongjesom is 9.2±3.6(2σ) ka, implying that the volcanism of Heongjeseom may have occurred earlier than the Songaksan tuff ring which erupted ca. 3.7 ka. It still remains a task to find a volcano which matches with a historical record of volcanic activity that occurred a thousand years ago.

Overview of Epithermal Gold-Silver Mineralization, Korea:

  • Park, Seon-Gyu;Ryu, In-Chang;So, Chil-Sup;Wee, Soo-Meen;Kim, Chang-Seong;Park, Sang-Joon;Kim, Sahng-Yup
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.7-14
    • /
    • 2003
  • The precious-meta] mineralization of epithermal type in the Korean Peninsula, which is spread over a broader range of ca. 110 to 60 Ma with a major population between 90 and 70 Ma, mainly occurred along the NE-trending major strike-slip fault systems (i.e., the Gongju and Gwangju ones) that commonly include volcano-tectonic depressions and calderas. The occurrence of epithermal mineralization during Late Cretaceous clearly indicates that the geologic setting of the Korean Peninsula changed to the favorable depth of ore formation with very shallow-crustal environments (〈1.0 kb) accompanied with gold-silver (-base-meta]) mineralization. Epithermal gold-silver deposits in Korea are primarily distinguished as sediment-dominant and volcanic-dominant basins by using criteria of varying alteration, ore and gangue mineralogy deposited by the interaction of different ore-forming fluids with host rocks and meteoric waters. These differences between the central and southern portions are causally linked to the tectonic evolution of the Peninsula during the Cretaceous time. In the Early Cretaceous, the sinistral strike-slip movements due to the oblique subduction of the Izanagi Plate resulted in the Gongju and Gwangju fault systems in the central portion of the Korean Peninsula, which was accompanied with a number of sediment-dominant basins formed along these faults. During the Late Cretaceous, the mode of convergence of the Izanagi Plate changed to northwesteward so that orthogonal convergence occurred with a calc-alkaline volcanism. As results, volcanic-dominant basins were developed in the southern portion of the Peninsula, accompanied with volcano-tectonic depressions and caldera-related fractures. The magmatism and related fractures during Late Cretaceous may play an important role in the formation of geothermal systems. Thus, such fault zones may be favorable environments for veining emplacement that is closely related to the precious-metal mineralization of epithermal type in the Korean Peninsula.

  • PDF

A Study on Detailed Bathymetry and Geophysical Characteristics of the Summit of the Dokdo Volcano (독도 화산체 정상부해역의 정밀해저지형 및 지구물리학적 특성 연구)

  • Kim, Chang Hwan;Park, Chan Hong;Lee, Myoung Hoon;Choi, Soon Young;Jou, Hyeong Tae
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.685-695
    • /
    • 2012
  • We studied the detailed bathymetry and the geophysical characteristics of the summit of the Dokdo volcano using mutibeam echosounding and geophysical survey data. The bathymetry around the main east and west islets of the Dokdo volcano shows very shallow within about 10 m water depth. From near islets to about 30 m b.s.l., the shallow water area has very steep slope and many irregular sunken rocks. The area from about 30 m to about 80 m b.s.l. shows gentle rises and falls, and less steep slope. The area from 80 m b.s.l. has gradually flat undulation and smooth slope seabaed and is extended to offshore. The main islets of the Dokdo volcano and the rocky sea bottom elongated from the islets might be the residual part of the eroded and collapsed main crater of the Dokdo volcano. The bathymetry and the seafloor image(from backscattering) data show small craters, assumed to be formed by the eruption of later volcanism. The seafloor images propose that, except some areas with shallow sand sedimentary deposits, there are typical rocky bottom such as rocky protrusions and lack of sediments in the main morphology of the survey area. The stepped slopes of the seabed are deduced to be submarine terraces. The several prominent submarine terraces are found at the summit of the Dokdo volcano, suggesting repetition of sea level changes(transgressions and regressions) in the Quaternary. The results of the magnetic anomaly and the analytic signal have a good coherence with other geophysical consequences regarding to the location of the residual crater.

Chemical Characteristics for Hydrothermal Alteration of Surface Sediments from Submarine Volcanoes of the Tonga Arc (통가열도 해저화산 표층 퇴적물 내 열수변질의 화학적 특성)

  • Um, In Kwon;Chun, Jong-Hwa;Choi, Hunsoo;Choi, Man Sik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.245-262
    • /
    • 2013
  • We analyzed 29 surface sediment samples in five submarine volcanoes (TA12, TA19, TA22, TA25, and TA26) located in the southern part of the Tonga arc for trace elements and rare earth elements to investigate characteristics of the hydrothermal alteration of surface sediments. Based on analytical results of trace element and rare earth element (REE), surface sediments of TA12, TA19, and TA22 submarine volcanoes, which are located in the northern part of the study area, were very little or not influenced by hydrothermal fluids. In contrast, some stations of TA25 and TA26 submarine volcanoes were strongly affected by hydrothermal fluids. However, these two submarine volcanoes showed different features in element concentration in the sediments. Some stations of TA25 submarine volcano showed enrichment of Ni, Cu, Sn, Zn, Pb, Cr, Cd, Sb, W, Ba, Ta, Rb, Sr, and As, however, those of TA26 submarine volcano showed enrichment of Sn, Zn, Pb, Cd, Sb, Ba, Rb, and Sr. Stations which enriched trace elements were observed, enriched REEs were also observed. Average upper continental crust (UCC)-normalized REE patterns of the surface sediments generally showed low light REE (LREE) abundances and increased heavy REE (HREE) abundances. Eu enrichment was identified at several stations of TA25 and TA26 submarine volcanoes. In addition, enrichment of Ce was found at some stations of TA26 submarine volcano and these enrichment patterns were similar with hydrothermal fluid of near stations. Furthermore, TA25 and TA26 submarine volcanoes showed different enrichment characteristics of trace elements and REE. Trace elements were concentrated at TA25 submarine volcano. TA26 submarine volcano, on the other hand, observed highly enrichment of REE especially, Eu and Ce. As a result of the investigation, the characteristics and concentrations of REEs and trace elements in the surface sediments of each submarine volcano can be applied to identify hydrothermal alteration of sediments during exploration for hydrothermal deposits.

Geophysical study on the summit of the Dokdo volcano (독도화산체 정상부에 대한 지구물리학적 조사 연구)

  • Kim, Chang-Hwan;Jeong, Eui-Young;Park, Chan-Hong;Jou, Hyeong-Tae;Lee, Seung-Hoon;Kim, Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.207-212
    • /
    • 2008
  • Bathymetry, side scan sonar, and magnetic survey data for the summit area of Dokdo obtained by Korea Ocean Research & Development Institute in 1999, 2004, and 2007 were analyzed to investigate the geophysical characteristics of the summit. Bathymetry and topographic data for the summit of Dokdo show uneven seabed and irregular undulations from costal line to -90 m in water depth, indicating the effects of partial erosions and taluses. The stepped slope in the bathymetry is supposed to be a coastal terrace suggesting repetition of transgressions and regressions in the Quaternary. The bathymetry and the side scan sonar data show a small crater, assumed to be formed by post volcanisms, at depth of $-100\;{\sim}\;-120\;m$ in the northeastern and the northwestern parts of the survey area. Except some areas with shallow sand sedimentary deposits, there are rocky seafloor and lack of sediments in the side scan sonar images of the survey area, dominantly. The analytic signal of the magnetic anomaly coincides with other geophysical results regarding to the location of the residual crater. The geophysical constraints of the summit of Dokdo propose that the islets and the rocky seabed elongated northeastward and northwestward from the islets might be the southern crater of the Dokdo volcano.

  • PDF

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano (백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Pan, Bo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.128-139
    • /
    • 2022
  • This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.

Risk Analyses from Eruption History and Eruptive Volumes of the Volcanic Rocks in Ulleung Island, East Sea (울릉도 화산암류의 분화이력과 분출량에 따른 위험도 분석)

  • Hwang, Sang Koo;Jo, In Hwa
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.181-191
    • /
    • 2016
  • We estimate the eruption history and magmatic eruptive volumes of each rock units to evaluate the volcanic eruption scale and volcanic hazard of the Ulleung Island. Especially, Maljandeung Tuff represents about 19~5.6 ka B.P. from $^{14}C$ dating, and Albong Trachyandesite, about 0.005 Ma from K-Ar dating in recent age dating data. These ages reveal evidences of volcanic activities within the last 10,000 years, indicating that the Ulleung Island can classify as an active volcano with possibility of volcanic eruption near future. Accumulated DRE-corrected eruptive volume is calculated at $40.80km^3$, within only the island. The calculated volumes of each units are $3.71km^3$ in Sataegam Tuff, and $0.10km^3$ in Maljandeung Tuff but $12.39km^3$ in accounting the distal and medial part extended into southwestern Japan. Volcanic explosivity indices range 1 to 6, estimating from the volumes of each pyroclastic deposits. The colossal explosivity indices are 5 in Sataegam Tuff, and 6 in Maljandeung Tuff in accounting the distal and medial part. Therefore, it is necessary for appropriate researches regarding possibility of volcanic eruption of the island, and establishment system of the evaluation and preparation for volcanic hazard based on the researches is required.

One-cyclic Volcanic Processes at Udo Crater, Korea (우도(牛島) 분화구(噴火口)에서의 일윤회(一輪廻) 화산과정(火山過程))

  • Hwang, Sang Koo
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 1993
  • Udo Island, some 3 km off the coast of Sungsan Peninsula at the eastern promontory of Cheju Island, occurs in such a regular pattern on the sequences which reprent an excellent example of an eruptive cycle. The island comprises a horseshoe-shaped tuff cone, a nested cinder cone on the crater floor, and a lava delta which extends over northwest from the moat between two cones. The volcanic sequences suggest volcanic processes that start with emergent Surtseyan eruption, progress through Strombolian eruption and end with lava effusion followed by reworking of smooth tephra on the tuff cone. Eruptive environment and hydrology of vent area in the Udo tuff cone are poorly constrained because the stratigraphic units under the tuff cone are unknown. It is thoughl, however, that the tuff cone could be mainly emergent because the present cone deposits show no evidence of marine reworking, and standing body of sea water could play a great role. The emergent volcano is characterized by distinctive steam-explosivity that results primarily from a bulk interaction between rapidly ascending magma and a highly mobile slurry. The sea water gets into the vent by flooding accross or through the top or breach of tephra cone. Udo tuff cone was constructed from Surtseyan eruption which went into with tephra finger jetting activities in the early stage, late interspersed with continuous uprush activities and proceeded to only continuous uprush activities in the last. When the enclosure of the vent by a long-lived tephra barrier would prevent the flooding and thus allow the vent to dry out, the Surtseyan eruption ceased to transmit into Strombolian activities, which constructed a cinder cone on the crater floor of the tuff cone. The Strombolian eruption ceased when magma in the conduit gradually became depleted in gas. In the case of Udo, the last magmatic activity was Hawaiian-type (and/or fountain) which accumulated basalt lava delta. And then the loose tephra of the tuff cone reworked over the moat lava and the northeastern flank.

  • PDF

Eruptive mechanisms and processes at Udo tuff cone, Udo Island, Korea (우도응회과의 분출기기구와 분출과정)

  • Hwang, Sang-Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.91-103
    • /
    • 1992
  • Eruptive mechanisms and processes at Udo tuff cone can be inferred from indicative characters of products, bedforms and lithofacies, and ring faults. In terms of bedforms and lithofa-cies in particular, massive lapilli tuff beds and chaotic lapilli tuff beds are derived from subaerial falls of aggregated tephra of wet tephra finger jets, occurring dominantly at the lower sequences of proximal part at the tuff cone. Crudely stratified lapilli tuff are derived from subaerial falls of slightly aggregated tephra of less wet tephra finger jets, whereas reversely graded lapilli tuff beds are from slightly disaggregated subaerial falls of continuous uprush. Both beds frequently occur in the middle sequences at proximal and near medial part of the tuff cone. Block and lapilli tephra lenses, ash-coated lapilli tephra beds(lenses) and thin-bedded tuff beds are derived from extremely disaggregated subaerial falls of dry tephra in the continuous uprush, frequently occurring at the upper sequences of medial part at the tuff cone. Udo tuff cone is a basaltic volcano emergent through the sea water surface while water could flood across or into the vent area. Emergence of the tuff cone was from the type-Surtseyan eruption characterized by earlier tephra finger jets and later continuous uprush columns of tephra with copious volumes of steam. Explosions began when boiling of wter produced a bubble column reducing the hydrostatic pres-sure, allowing exsolution of gases from the magma. This expansion of magma into a vesiculating froth fragmented the magma and permitted mixing of magma and water so that a more vigorous generation of steam could proceed. Tephra finger jetting explosions continued to build the crater rims, then remove water from the vent that their deposits flowed like slsurries until the continuous uprush explosion ensued. Continuous uprush explosions were associated with most rapid accumula-tion of tephra. The increasing volume rate led to partial removal of water from the vent area by the newly tephra ring so that more vigorous activity could be attended by a reducing water supply. This might restrain surplus of cold water entering the vent and thus enhance the vigour of the eruption by allowing optimal heat exchange. Eventually the crater became so deep and unsuported that piecemeal sliding, or massive subsidence on indipping ring faults, filled and closed the vent, and the cycle of explosions and collapse began anew.

  • PDF