• 제목/요약/키워드: Volcanic stratigraphy

검색결과 32건 처리시간 0.018초

포항분지(浦項盆地) 북부(北部)(칠포(七浦)-월포(月浦)일원)에 분포(分布)하는 화산암류(火山岩類)에 대한 암석학적(岩石學的)·층서적(層序的) 연구(硏究) (Stratigraphy and Petrology of the Volcanic mass in the Chilpo-Weolpo Area, the north of Pohang basin, Korea)

  • 윤성효
    • 자원환경지질
    • /
    • 제21권2호
    • /
    • pp.117-129
    • /
    • 1988
  • The purpose of this study is to determine the stratigraphy of the volcanic rocks in the Chilpo-Weolpo area, the north of Pohang basin, based on field survey and lithological properties of the rocks. The volcanic pile(Chilpo tuff) overlies the Cretaceous sedimentary formation and is unconformably overlain by the Miocene Yeonil Group. The Chilpo tuff comprises a thick sequence(>200m) of pyroclastic flow deposits. Five members are distinguished, each representing separate flow units, comprising none(or weakly) to densely welded rhyolite tuff. The Chilpo tuff consists of, in ascending order, greenish weakly welded tuff, volcanic conglomerate, alternation of tuff breccias and fine tuffs, greenish none to densely welded tuff and red-brownish densely to weakly welded vitric tuff. This study revealed that the volcanic rocks in this area were formed by 4 volcanic stages. On the basis of K-Ar age($44.7{\pm}1.1\;Ma$) and lithologic data, geological age of the Chilpo tuff may be Eocene.

  • PDF

전남(全南) 고흥반도(高興半島)에 분포(分布)하는 화산암류(火山岩類)의 화산층서(火山層序) 및 암석학적(岩石學的) 연구(硏究) (Volcano-Stratigraphy and Petrology of the Volcanic Mass in the Koheung Peninsula, South Cheolla Province, Korea)

  • 윤성효;황인호
    • 자원환경지질
    • /
    • 제21권4호
    • /
    • pp.335-348
    • /
    • 1988
  • The author aimed to describe the volcano-stratigraphy and petrology of the volcanic mass in the Koheung peninsula, South Cheolla province. The volcanic mass is composed of the volcanics and intrusives of late Cretaceous which extruded the Pre-cambrian metamorphic(Jirisan gneiss complex) and the early Cretaceous sedimentary(Duwon Formation) basement. The volcanic pile consists of, in ascending order, Bibongsan andesite, Koheung tuff and breccia, and Palyeongsan welded tuff, and are intruded by ring intrusives( intrusive breccia, andesite porphyry, intrusive rhyolite and fine-grained quartz-diorite) and central pluton(diorite, quartz monzodiorite, biotite granite and micrographic granite). Bibongsan andesite mainly consists of andesite tuff and lava. Koheung tuff consists of alternation of fine tuff, coarse tuff and lapilli tuff, and Palyeongsan welded tuff which overlies Koheung tuff, comprises K-feldspar and quartz phenocrysts, elongated brown fiamme, lithic fragments in matrix of devitrified brown glass shards, and mainly consists of rhyodacite to rhyolite vitric ash-flow tuff. The results of petrochemical studies of the igneous rocks suggest that the rocks were a serial differentiational products of fractional crystallization of calc-alkaline magma series. This study reveals that the volcanic mass in this area is inferred to the remnant of the resurgent cauldron, measuring 30 by 25 km in diameter. The cauldron block was lowered at least 1,000 m by ring fault displacement.

  • PDF

의성분지 동부에 분포하는 백악기 화산암류의 화산층서와 암석학적 연구 (Volcanic stratigraphy and petrology of Cretaceous volcanic rocks in the eastern part of the Euiseong Basin)

  • 정종옥;좌용주
    • 암석학회지
    • /
    • 제9권4호
    • /
    • pp.238-253
    • /
    • 2000
  • 의성분지 동부지역의 중성~산성 화산암류는 백악기 퇴적층을 기반으로 광범위하게 분포하며, 후기의 화강암류와 암맥에 의해 관입당해 있다. 연구지역의 화산층서는 하부로부터 안산암 용암, 데사이트질 래필리 응회암, 데사이트질 유상 용암, 유문암질 층상 응회암, 유문암질 괴상 응회암, 데사이트질 괴상 용암, 유문암질 용결 응회암 순의 층서를 나타낸다. 안산암 용암을 덮고 있는 데사이트 조성의 화산암류는 화산활동의 특성으로 인해 본 역 북서부에만 분포한다. 화산암류의 전반적인 $SiO_2$함량은 51~74 wt%이며, $SiO_2$에 대한 각 산화물의 변화 경향을 보면, $SiO_2$가 증가함에 따라 $TiO_2$, $A1_2$$O_3$, MgO, FeOT MnO, CaO, $P_2$$O_{5}$ 는 감소하고, $K_2$O는 증가하며, $Na_2$O는 일정한 경향을 보이지 않고 분산된다. 이는 경상분지 남동부 유천 소분지에서 나타나는 변화 경향과 유사하다. 지구화학적 구분에 의하면 연구 지역의 화산암류는 고-K에서 중-K 칼크-알칼리 계열에 해당되며, 또한 지판의 섭입과 관련된 호상열도형 화산암의 특징을 보여준다. 주성분 원소, 미량 원소, 희토류 원소의 변화경향으로부터 살펴본 화산암류의 지구화학적 특징은 화산암류가 유사 기원 물질을 가지는 마그마들의 사장석 분별정출작용에 의한 마그마 분화과정에 의해 형성되었음을 나타낸다. 연구 지역 화산암류의 화산층서는 안산암에서 유문암, 그리고 데사이트에서 유문암으로 분화한 최소한 2개 이상의 마그마 펄스에 의한 화산활동과 마그마의 결정분화로 설명될 수 있다.달상태가 더 양호한 것으로 나타났다. 화강암의 "결"과 미세균열의 방향성을 측정하기 위하여 최대 균열 변형율과 최소 균열 변형율의 비($\varepsilon$max/$\varepsilon$min)를 계산하였다. 그 비는 2.42에서 3.43까지의 높은 값을 가지는데, 이는 연구지역의 조립질 화강암류 석재에 발달되어 있는 미세균열은 대부분이 일정한 방향성을 보이는 입자내 균열임을 시사한다.분이 일정한 방향성을 보이는 입자내 균열임을 시사한다. 화학(化學)간장은 양조(釀造)간장은 비(比)해 철분함량(鐵分含量)이 높았다. 7. 시판(市販)간장중(中)의 철분함량(鐵分含量)은 제조원(製造元)에 따라 다양하나 총질소(總窒素) 1.0으로 환산(換算)하여 평균(平均) 62.7ppm이었으며 재래식(在來式) 간장의 철분함량(鐵分含量)은 평균(平均) 37.68ppm이었다.보건관리 5.67 시간, 모자보건 및 가족계획 5.52 시간, 사업 운영관리 및 지도 4.10시간, 지역사회 조직 및 개발 3.05 시간, 보건정보체계 개발 및 수집 2.94 시간, 사업계획 수립 2.89시간의 순으로 나타났다. 5) 보건진료원의 업무영역별 수행 소요시간의 상판판계를 살펴보면 지역사펴 조직 및 개발을 위 해 소요한 시간은 사엽계획 수립 소요시간 및 보건정 보체계 관리 소요시간과 순상관관계를, 사업 계획 수립 소요시간은 지역사회 보건관리, 모자보건 및 가족계획 관리 소요시간 및 보건정보체제 관리 소요시간과 순상관관계를 나타냈다. 또한 통상질환관리 소요시간은 지역 사회 조직 및 개발, 사업계획 수립, 지역사회 보건관리와 모자보건 및 가족계획 관리, 사업운영 관리 및 지도, 보건정보체계 관리 소요시간과 역상관관계를 나타내었다. 6) 보건진료원의 총 업무수행 정도를 잘펴보면 업무수행 점수의 평균은

  • PDF

제주도 사라봉-별도봉-화북봉 일원의 화산층서와 화산암의 특성 (Volcanic Stratigraphy and Characteristics of Volcanic Rocks of the Sarabong-Byeoldobong-Hwabukbong Area, Cheju kland, Korea)

  • 고보균;원종관;이문원;손인석
    • 한국지구과학회지
    • /
    • 제22권1호
    • /
    • pp.10-19
    • /
    • 2001
  • 제주도 사라봉-별도봉-화북봉 일대에는 3개의 분석구와 이들로부터 분출한 화산분출물들이 복잡한 화산 층서를 형성하였다. 또한 별도봉 응회암에는 현무암과, 제주도 기반암중의 하나인 화강암의 암편이 나타난다. 그리고 비석거리 하와이아이트(hawaiite)에는 케르수타이트(kaersutite)가 특징적으로 나타나기 때문에 제주도 화산활동사를 연구하는데 중요한 대상이 된다. 이 지역의 최하부에는 신흥리 현무암과 별도봉 응회암이 분포한다 별도봉 응회암에는 반상 현무암과 이 지역의 기반암인 화강암의 암편을 함유한다. 그 위에 화북봉 화산활동에 의해 각섬석류의 한 종류인 케르수타이트를 다량 함유한 비석거리 하와이아이트가 피복하고 그 다음에 화북봉 분석구가 형성되었다. 그 후에 사라봉 화산활동에 의해 사장석과 감람석이 많은 건입동 하와이아이트가 분출하였고 마지막으로 사라봉 분석구가 형성되었다. 별도봉 응회암내에 포획된 현무암은 신흥리 현무암과는 암상이 다른 반정질 현무암으로, 신흥리 현무암과 기반암 사이에 또 다른 현무암층이 존재할 것으로 추정된다. 이 지역의 기반암인 화강암의 암편은 미르메카이트 조직(myrmekitic texture)과 미사장석을 보이며 K-Ar법에 의한 절대연령이 172.4Ma인 쥬라기 화강암이다.

  • PDF

부산일원에 분포하는 백악기 화산암류의 암석학적 연구(I) (Petrology of the Cretaceous volcanic rocks in Pusan ares, Korea)

  • 김진섭;윤성효
    • 암석학회지
    • /
    • 제2권2호
    • /
    • pp.156-166
    • /
    • 1993
  • 부산시 남부일원에 분포하는 백악기 화산암류에 대한 화산층서 및 각 암층별 화학성분 변화 그리고 화산활동의 양상을 고찰한 결과, 본역에 분포하는 중성화산암류는 안산암질 화성쇄설암 (pyroclastic rocks)과 안산암으로 구분되며, 이들은 서로 호층을 이루며 두터운 층후의 화산암누층을 형성하는 다윤회 성층화산체의 구성물이다. 안산암류는 반정광물로 휘석(augite), 사장석 및 각섬석이 나타나며 석기는 휘석, 자철석, 각섬석, 인회석 그리고 유색광물의 변질광물인 녹니석, 녹염석, 견운모, 철광립 등으로 구성되어있다. 국부적으로 안산암질 화산암누층의 상부에는 데이사이트질 화산각력암과 유문암질 용결회류응회암(welded ash-flow tuff) 등이 분출 피복하고 있다. 선행연구(부산·가덕도폭)에서 안산암질 각력암 또는 안산암으로 기재한 화산암류들은 화학성분에 따라 구분해 보면 현무암에서 현무암질 안산암, 안산암, 데이사이트 및 유문암의 성분영역에 해당된다. 본역의 화산암류는 칼크-알칼리 계열의 성분변화를 나타내며, 본역에 가장 광범위하게 분포하는 안산암류는 조산대 안산암(Oroge-nic andesite)에 속한다.

  • PDF

독도 주변해역의 지구조와 퇴적환경 (Geological Structure and Depositional Environments in the Dok Island, East Sea)

  • 허식;박찬홍;유해수;한상준
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2005년도 공동학술대회 논문집
    • /
    • pp.145-150
    • /
    • 2005
  • 독도 주변 해역에는 최대 3 km 두께의 퇴적층이 화산활동에 의해 변형된 기반암 위에 집적되어 있다. 지질구조로는 기반암에 분지 형성 시기에 생성된 정단층이 우세하게 나타나는 반면, 퇴적층 내에는 화산활동에 의한 정단층, 화산돔 및 화산수평맥 등이 우세하게 관찰된다. 이들의 각 시대별 분포로부터 울릉분지에서는 북동쪽(독도 방향)으로 가면서 화산활동이 활발했음을 알 수 있다. 퇴적층이 집적되기 전인 초${\cdot}$중기 마이오세 이전에 조사지역은 확장성 지각변형이 우세했으며, 후기 마이오세 말기 이후에는 지하내부의 화산체 활동 및 분지의 침강 등의 지구조 운동에 의해 변형되어 현재와 같은 복잡한 구조의 분지를 형성하였다.

  • PDF

독도 주변해역의 지구조와 퇴적환경 (Geological Structure and Depositional Environments in the Dok Island, East Sea)

  • 허식;박찬홍;유해수;한상준
    • 지구물리
    • /
    • 제8권3호
    • /
    • pp.131-135
    • /
    • 2005
  • 독도 주변 해역에는 최대 3 km 두께의 퇴적층이 화산활동에 의해 변형된 기반암 위에 집적되어 있다. 지질구조로는 기반암에 분지 형성 시기에 생성된 정단층이 우세하게 나타나는 반면, 퇴적층 내에는 화산활동에 의한 정단층, 화산돔 및 화산수평맥 등이 우세하게 관찰된다. 이들의 각 시대별 분포로부터 울릉분지에서는 북동쪽(독도 방향)으로 가면서 화산활동이 활발했음을 알 수 있다. 퇴적층이 집적되기 전인 초․중기 마이오세 이전에 조사지역은 확장성 지각변형이 우세했으며, 후기 마이오세 말기 이후에는 지하내부의 화산체 활동 및 분지의 침강 등의 지구조 운동에 의해 변형되어 현재와 같은 복잡한 구조의 분지를 형성하였다.

  • PDF

포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代) (Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks)

  • 이현구;문희수;민경덕;김인수;윤혜수;이타야 테츠마루
    • 자원환경지질
    • /
    • 제25권3호
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

강원도 고성-간성일대의 신생대 화산체의 형성과정 (The Formation of the Cenozoic Volcanic Edifice in the Goseong-Ganseong Area, Gangwondo, Korea)

  • 김화성;길영우;이문원
    • 한국지구과학회지
    • /
    • 제33권7호
    • /
    • pp.627-636
    • /
    • 2012
  • 강원도 고성군 오봉리에는 6개의 화산체(뒤배재, 오음산, 갈미봉, 249 m 고지, 166 m 고지, 102 m 고지)가 밀집하여 분포하고 있다. 그리고 고성산 화산체와 운봉산 화산체가 단독으로 멀리 떨어져 있다. 오봉리의 249 m 고지 화산체는 이 연구에서 새롭게 발견된 것이며, 오봉리에 분포하는 6개의 화산체들을 오봉리 화산체군이라 명명한다. 이 지역 화산체는 여러 연구자에 따라 화산전, 플러그 돔, 원통형 화산통 등으로 해석된다. 이 연구는 화산체의 형태, 화산분출물의 층서 및 특징을 바탕으로 화산활동 양상과 화산체의 형성과정을 알아보았다. 이 지역의 모든 화산체는 중생대 화강암 위에 현무암류가 분포하고, 기반암에서 상부로 갈수록 산사면의 경사도가 증가하는 돔 형태이다. 특히 3개의 화산체(뒤배재, 166 m 고지, 102 m 고지)에서는 현무암과 기반암 사이에 화성쇄설층이 발견된다. 뒤배재 화산체의 화성쇄설층에서는 기반암 기원으로 추정되는 석영, 장석 및 화강암편과 화산분출물인 스코리아 암편이 분포한다. 그리고 모든 화산체의 현무암내에는 맨틀포획암과 기반암인 화강암류와 하부지각 기원의 반려암류의 포획암을 함유한다. 또한 각진 형태의 감람석, 사장석, 휘석 등의 포획광물이 있다. 이러한 사실은 마그마가 지표로 빠르게 상승하였고, 화산활동이 폭발적이었음을 지시한다. 또한 현무암내의 다량의 포획광물 등은 현무암질 마그마의 점성을 증가시켜 돔형의 화산체를 형성한 것으로 판단된다. 그리고 화산체가 오랜 시간 동안의 삭박작용을 거쳐 원지형이 파괴되면서, 돔의 심부가 기반암 위에 플러그 돔으로 남게 된 것으로 해석된다.

울릉도의 화산층서와 단층에 대한 연구 (A Study on Volcanic Stratigraphy and Fault of Ulleung-do, Korea)

  • 김기범;이기동
    • 지질공학
    • /
    • 제18권3호
    • /
    • pp.321-330
    • /
    • 2008
  • 울릉도 화산체의 지질과 지질구조 및 화산활동상을 연구하기 위해서 선행된 연구 자료를 수집하고 현장조사를 실시하였다. 울릉도는 동해 해저에서부터 약 3,000m 높이의 화산체로 해수면 부근의 기저는 현무암질 집괴암이며 그 상위로 조면암질 집괴암, 조면암, 조면암질 부석과 조면안산암 순으로 분포하고 있다. 나리분지의 칼데라는 함몰에 의해 역삼각형의 단층이 나타나고 있고, 나리분지를 중심으로 북동-남서방향과 북서-남동방향의 단층들이 분포하고 있다. 신생대 제4기(Quaternary)의 울릉도 화산활동은 해수면 부근의 현무암질 집괴암 및 응회암 분출의 제1기, 조면암질 집괴암 및 응회암이 분출한 제2기, 조면암질 용암류의 분출의 제3기, 조면암질 부석이 분출한 제4기, 칼데라 내의 조면암질 안산암이 분출시기인 제5기로 구분하였다. 울릉도의 지질은 다양하고 복잡하여 지질공학 또는 응용지질분야에서 접근하기가 용이하지 않았다. 따라서 이번 연구에서는 울릉도 지질을 단순화하여 이들이 쉽게 활용할 수 있도록 자료를 제공하고자 하였다.