The Journal of Asian Finance, Economics and Business
/
v.7
no.9
/
pp.63-74
/
2020
This study investigates the behavior of foreign investors in the Stock Exchange of Thailand (SET) in the time of coronavirus disease 2019 (COVID-19) as to whether trading is abnormal, what strategy is followed, whether herd behavior is present, and whether the actions destabilize the market. Foreign investors' trading behavior is measured by net buying volume divided by market capitalization, whereas the stock market behavior is measured by logged return on the SET index portfolio. The data are daily from Tuesday, August 28, 2018, to Monday, May 18, 2020. The study extends the conditional-regression model in an event-study framework and extracts the unobserved abnormal trading behavior using the Kalman filtering technique. It then applies vector autoregressions and impulse responses to test for the investors' chosen strategy, herd behavior, and market destabilization. The results show that foreign investors' abnormal trading volume is negative and significant. An analysis of the abnormal trading volume with stock returns reveals that foreign investors are not positive-feedback investors, but rather, they self-herd. Although foreign investors' abnormal trading does not destabilize the market, it induces stock-return volatility of a similar size to normal trade. The methodology is new; the findings are useful for researchers, local authorities, and investors.
It is well known that the distributional properties of financial asset returns exhibit fatter-tails and skewer-mean than the assumption of normal distribution. The correct assumption of return distribution might improve the estimated performance of the Value-at-Risk(VaR) models in financial markets. In this paper, we estimate and compare the VaR performance using the RiskMetrics, GARCH and FIGARCH models based on the normal and skewed-Student-t distributions in two daily returns of the Korean Composite Stock Index(KOSPI) and Korean Won-US Dollar(KRW-USD) exchange rate. We also perform the expected shortfall to assess the size of expected loss in terms of the estimation of the empirical failure rate. From the results of empirical VaR analysis, it is found that the presence of long memory in the volatility of sample returns is not an important in estimating an accurate VaR performance. However, it is more important to consider a model with skewed-Student-t distribution innovation in determining better VaR. In short, the appropriate assumption of return distribution provides more accurate VaR models for the portfolio managers and investors.
본 연구는 한국주가지수선물시장에 있어서 1996년 5월부터 1998년 6월까지의 기간동안에 상장되어 실질적으로 거래된 각 주가지수선물 종목별 가격 및 거래량자료를 이용하여 만기까지의 기간, 거래량 그리고 가격변동성간의 체계적인 관계를 검증하였다. 즉, 주가지수선물의 종목들이 만기일에 접근함에 따라 거래량은 어떻게 변동하는가, 그리고 변동성은 어떻게 변동하는가를 실증적으로 검증한 것이다. 검증된 실증결과를 요약하면 다음과 같다. 첫째, 주가지수선물시장에 있어서 거래되는 종목들은 만기까지의 기간과 거래량간에 유의적인 음(-)의 관계가 확인되었고, 이는 만기일에 정근함에 따라 거래량은 증가하는 행태를 갖는다는 것이 일반적인 현상임을 알 수 있었다. 둘째, 주가지수선물시장에서 거래된 종목들에 있어서 동시적 거래량과 변동성간에는 유의적인 양(+)의 관계가 성립함에 따라 혼합분포가설을 주장한 Clark(1973)의 연구결과를 어느 정도 지지하는 증거를 발견하였다. 셋째, 주가지수선물시장에 있어서 만기까지의 기간과 변동성간에는 유의적인 음(-)의 관계가 존재한다는 것을 확인할 수 없었다 즉, 만기일에 접근함에 따라 가격변동성이 증가한다는 만기 효과가설을 지지하는 증거를 한국주가지수선물시장에서는 발견할 수 없었다.
Journal of the Korean Data and Information Science Society
/
v.25
no.6
/
pp.1333-1343
/
2014
Hansen and Lund (2005) documented that a univariate GARCH(1,1) model is no worse than other sophisticated GARCH models in terms of prediction errors such as MSPE and MAE. Here, we extend Hansen and Lund (2005) by considering multivariate GARCH models and incorporating risk management measures such as VaR and fail percentage. Our Monte Carlo simulations study shows that multivariate GARCH(1,1) model also performs well compared to asymmetric GARCH models. However, we suggest that actual model selection should be done with care in light of risk management. It is applied to the realized volatilities of KOSPI, NASDAQ and HANG SENG index for recent 10 years.
Kim, Hyo Jin;Shin, Dong Wan;Park, Jonghun;Lee, Sang-Goo
The Korean Journal of Applied Statistics
/
v.28
no.2
/
pp.189-200
/
2015
Stationary bootstrapping is applied to a Lagrangian multiplier (LM) test to test market microstructure noise (MMN) in financial asset prices. A Monte-Carlo experiment shows that the bootstrapping method improves the size of the original LM test which has some size distortion for conditional heteroscedastic models. The proposed test is illustrated for real data sets like KOSPI index and Won-Dollar exchange rate.
The Journal of Economics, Marketing and Management
/
v.9
no.4
/
pp.1-8
/
2021
Purpose: This study empirically investigates what factors contribute to corporate value in the Korea New Exchange (KONEX) market and determines whether financial constraints contribute any effect on it. Research design, data and methodology: A fixed-effect panel regression model was utilized to analyze financial constraints on firm value for KONEX listed firms through the fiscal period from 2013 to 2020. Results: we find that firms' research and development, volatility, size, and sales growth give significant impacts to firm value, but the significance and direction are different. In addition, no significant relationship exists between the largest shareholder's equity ratio and firm value in all models. The debt-to-equity ratio did not show a significant relationship with corporate value. A significant negative relationship was found between R&D and corporate value in the entire sample. Volitility exhibited a positive relationship with corporate value in the entire sample and financially unconstrained companies. Firm size presented a significant negative relationship with company value in all models. Sales growth showed a significant negative relationship with corporate value in financially constrained companies. Conclusions: No difference is found between financially constrained and unconstrained companies in the KONEX market. We can infer that KONEX companies have a large difference with KOSPI or KOSDAQ. Further analysis is needed on the differences among these markets.
Purpose: This study is to investigate the effect of managerial ownership level in distribution and service companies on the stock price crash. The managerial ownership level affects the firm's information disclosure policy. If managers conceal or withholds business-related unfavorable factors over a long period, the firm's stock price is likely to plummet. In a similar vein, management's equity affects information opacity, and information asymmetry affects stock price collapse. Research design, data, and methodology: A regression analysis is conducted using the data on companies listed on the Korea Composite Stock Price Index (KOSPI) between 2012-2017 to examine the effect of the managerial ownership level on stock price crash risks. Results: Logistic and regression results indicate that the stock price crash risk was reduced as managerial ownership levels are increased. The managerial ownership level has a significant negative coefficient on stock price crash risk, negative conditional return skewness of firm-specific weekly return distribution, and asymmetric volatility between positive and negative price-to-earnings ratios. Conclusions: As the ownership and management align, the likeliness of withholding business-related information is reduced. This study's results imply that the stock price crash risk reduces as the managerial ownership level increases because shareholder and manager interests coincide, thereby reducing information asymmetry.
Sivarethinamohan, R;ASAAD, Zeravan Abdulmuhsen;MARANE, Bayar Mohamed Rasheed;Sujatha, S
The Journal of Asian Finance, Economics and Business
/
v.8
no.8
/
pp.311-324
/
2021
Investors have increasingly become interested in macroeconomic antecedents in order to better understand the investment environment and estimate the scope of profitable investment in equity markets. This study endeavors to examine the interdependency between the macroeconomic antecedents (international oil price (COP), Domestic gold price (GP), Rupee-dollar exchange rates (ER), Real interest rates (RIR), consumer price indices (CPI)), and the BSE Sensex and Nifty 50 index return. The data is converted into a natural logarithm for keeping it normal as well as for reducing the problem of heteroscedasticity. Monthly time series data from January 1992 to July 2019 is extracted from the Reserve Bank of India database with the application of financial Econometrics. Breusch-Godfrey serial correlation LM test for removal of autocorrelation, Breusch-Pagan-Godfrey test for removal of heteroscedasticity, Cointegration test and VECM test for testing cointegration between macroeconomic factors and market returns,] are employed to fit regression model. The Indian market returns are stable and positive but show intense volatility. When the series is stationary after the first difference, heteroskedasticity and serial correlation are not present. Different forecast accuracy measures point out macroeconomics can forecast future market returns of the Indian stock market. The step-by-step econometric tests show the long-run affiliation among macroeconomic antecedents.
The Journal of Asian Finance, Economics and Business
/
v.8
no.9
/
pp.45-52
/
2021
Stock price fluctuations affect investor returns, particularly, in this pandemic situation that has triggered stock market shocks. As a result of this situation, investors prefer to move their money into a safer portfolio. Therefore, in this study, we approach an efficient portfolio model using smart beta and combining others to obtain a fast method to predict investment stock returns. Smart beta is a method to selects stocks that will enter a portfolio quickly and concisely by considering the level of return and risk that has been set according to the ability of investors. A smart beta portfolio is efficient because it tracks with an underlying index and is optimized using the same techniques that active portfolio managers utilize. Using the logistic regression method and the data of 100 low volatility stocks listed on the Indonesia stock exchange from 2009-2019, an efficient portfolio model was made. It can be concluded that an efficient portfolio is formed by a group of stocks that are aggressive and actively traded to produce optimal returns at a certain level of risk in the long-term period. And also, the portfolio selection model generated using the smart beta, beta, alpha, and stock variants is a simple and fast model in predicting the rate of return with an adjusted risk level so that investors can anticipate risks and minimize errors in stock selection.
Purpose - The purpose of this study was to examine the impact of ESG rating changes of companies listed in Korean Stock Exchange on stock returns. Design/methodology/approach - This study collected prices and ESG ratings of all the companies listed on the Korea Composite Stock Price Index. Based on yearly change of ESG ratings we grouped companies as 2 portfolios(upgrade and downgrade) and calculated portfolios' return. Findings - First, the difference in returns between upgraded and downgraded portfolios is small and statistically insignificant. Second, however, in the COVID-19 period (2020 ~ 2021), the upgraded portfolio outperforms the downgraded portfolio by 0.7 percentage points per month. The difference in returns between upgraded and downgraded portfolios is statistically significant after controlling for the Carhart four factors. Lastly, there are much higher volatility when the ESG rating changes are made of companies with low levels of ESG ratings. Research implications or Originality - This study is the first to examine the impact of ESG rating changes on stock returns in Korea. Furthermore, the findings can serve as a reference for managers who want to control a firm's risk by ESG rating changes. Practically, asset managers can use the findings to construct portfolios that are less risky or more profitable than the market portfolio.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.