• Title/Summary/Keyword: Volatility Index

Search Result 190, Processing Time 0.02 seconds

Volatility Analysis of Housing Prices as the Housing Size (주택 규모에 따른 가격 변동성 분석)

  • Kim, Jongho;Chung, Jaeho;Baek, Sungjoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.7
    • /
    • pp.432-439
    • /
    • 2013
  • In this study, we evaluate the volatility of housing prices by using literature review and empirical analysis and furthermore we suggest how to improve. In order to diagnose housing market, the KB Bank's House Price Index, Real estate 114;s materials were compared. In addition, to examine the volatility, GARCH (Generalized Autoregressive Conditional Heteroskedasticity) and EGARCH (Exponential GARCH) model are used. By analysis of this research, we found the volatility of housing price also was reduced in the medium and the large houses since 1998, while the volatility of small housing price relatively was large. We proved that the price change rate of small housing was higher than the medium's. On the order hand, the supply of small apartments fell down sharply. The short-term oriented policy should be avoided, and the efficiency and credibility of policy should be increased. Furthermore, the long-term policy system should be established. and rental market's improvement is necessary for stabilization of housing market.

A Study on the Volatility Transition of Steel Raw Material Transport Market (제철원료 운송시장의 변동성 전이 분석에 대한 연구)

  • Yo-Pyung Hwang;Ye-Eun Oh;Keun-Sik Park
    • Korea Trade Review
    • /
    • v.47 no.4
    • /
    • pp.215-231
    • /
    • 2022
  • Analysis and forecasting of the Baltic Capsize Index (BCI) is important for managing an entity's losses and risks from the uncertainty and volatility of the fast-changing maritime transport market in the future. This study conducted volatility transition analysis through the GARCH model, using BCI which is highly related to steel raw materials. As for the data, 2,385 monthly data were used from March 1999 to March 2021. In this study, after basic statistical analysis, unit root and cointegration test, the GARCH, EGARCH, and DCC-GARCH models were used for volatility transition analysis. As the results of GARCH and EGARCH model, we confirmed that all variables had no autocorrelation between the standardized residuals for error terms and the square of residuals, that the variability of all variables at this time was likely to persist in the future, and that the variability of the time-series error term impact according to Iron ore trade (IoT). In addition, through the EGARCH model, the magnitude convenience of all variables except the Iron ore price (IOP) and Capesize bulk fleet (BCF) variables was greater than the positive value (+). As a result of analyzing the DCC-GARCH (1,1) model, partial linear combinations were confirmed over the entire period. Estimating the effect of variability transition on BCF and C5 with statistically significant linear combinations with BCI confirmed that the impact of BCF on BCI was greater than the impact of BCI itself.

The Effects of International Finance Market Shocks and Chinese Import Volatility on the Dry Bulk Shipping Market (국제금융시장의 충격과 중국의 수입변동성이 건화물 해운시장에 미치는 영향)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.1
    • /
    • pp.263-280
    • /
    • 2011
  • The global financial crisis, triggered by the subprime mortgage crisis in 2007, has put the world economy into the recession with financial market turmoil. I tested whether variables were cointegrated or whether there was an equilibrium relationship. Also, Generalized impulse-response function (GIRF) and accumulation impulse-response function (AIRF) may be used to understand and characterize the time series dynamics inherent in economical systems comprised of variables that may be highly interdependent. Moreover, the IRFs enables us to simulate the response in freight to a shock in the USD/JPY exchange rate, Dow Jones industrial average index, Dow Jones volatility, Chinese Import volatility. The result on the cointegration test show that the hypothesis of no cointergrating vector could be rejected at the 5 percent level. Also, the empirical analysis of cointegrating vector reveals that the increases of USD/JPY exchange rate have negative relations with freight. The result on the impulse-response analysis indicate that freight respond negatively to volatility, and then decay very quickly. Consequently, the results highlight the potential usefulness of the multivariate time series techniques accounting to behavior of Freight.

Relationship Between Housing Prices and Expected Housing Prices in the Real Estate Industry (주택유통산업에서의 주택가격과 기대주택가격간의 관계분석)

  • Choi, Cha-Soon
    • Journal of Distribution Science
    • /
    • v.13 no.11
    • /
    • pp.39-46
    • /
    • 2015
  • Purpose - In Korea, there has been a recent trend that shows housing prices have risen rapidly following the International Monetary Fund crisis. The rapid rise in housing prices is spreading recognition of this as a factor in housing price volatility. In addition, this raises the expectations of housing prices in the future. These expectations are based on the assumption that a relationship exists between the current housing prices and expected housing prices in the real estate industry. By performing an empirical analysis on the validity of the claim that an increase in current housing prices can be correlated with expected housing prices, this study examines whether a long-term equilibrium relationship exists between expected housing prices and existing housing prices. If such a relationship exists, the recovery of equilibrium from disequilibrium is analyzed to derive related implications. Research design, data, and methodology - The relationship between current housing prices and expected housing prices was analyzed empirically using the Vector Error Correction Model. This model was applied to the co-integration test, the long-term equilibrium equation among variables, and the causality test. The housing prices used in the analysis were based on the National Housing Price Trend Survey released by Kookmin Bank. Additionally, the Index of Industrial Product and the Consumer Price Index were also used and were obtained from the Bank of Korea ECOS. The monthly data analyzed were from January 1987 to May 2015. Results - First, a long-term equilibrium relationship was established as one co-integration between current housing price distribution and expected housing prices. Second, the sign of the long-term equilibrium relationship variable was consistent with the theoretical sign, with the elasticity of housing price distribution to expected housing price, the industrial production, and the consumer price volatility revealed as 1.600, 0.104,and 0.092, respectively. This implies that the long-term effect of expected housing price volatility on housing price distribution is more significant than that of the industrial production and consumer price volatility. Third, the sign of the coefficient of the error correction term coincided with the theoretical sign. The absolute value of the coefficient of the correction term in the industrial production equation was 0.006, significantly larger than the coefficients for the expected housing price and the consumer price equation. In case of divergence from the long-term equilibrium relationship, the state of equilibrium will be restored through changes in the interest rate. Fourth, housing-price volatility was found to be causal to expected housing price, and was shown to be bi-directionally causal to industrial production. Conclusions - Based on the finding of this study, it is required to relieve the association between current housing price distribution and expected housing price by using property taxes and the loan-to-value policy to stabilize the housing market. Further, the relationship between housing price distribution and expected housing price can be examined and tested using a sophisticated methodology and policy variables.

The Effect of Baltic Dry Index on the Korean Stock Price Volatility (발틱운임지수가 한국 주가 변동성에 미치는 영향)

  • Choi, Ki-Hong;Kim, Dong-Yoon
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.2
    • /
    • pp.61-76
    • /
    • 2019
  • The purpose of this study is to use the EGARCH model and Granger causality test to analyze how the change in the BDI affects the Korean stock price volatility. The main analysis results are summarized as follows. First, according to the results of the mean equation, the change in the BDI is significant in large-cap stocks, as well as in the manufacturing, service, and chemistry indexes, but not in others. This implies that the Korean stock market does not respond appropriately to the maritime market situation; further, the increase in demand for raw materials has not led to a real economic recovery. Second, in the result of the variance equation, the coefficient on the change in the BDI is negative(-), and the change in the BDI is significant for all size indexes. Particularly, the change in the BDI has a greater impact on the volatility of small-cap stocks than that of large-cap stocks. The results of the analysis of the sector indexes were statistically significant for the service, financial, construction, and electric and electronics industries, but not for the manufacturing and chemical industries. In particular, the changes in the BDI have the greatest impact on the construction industry. Third, according to the Granger causality test results, the change in the BDI leads the financial industry and construction industry. There is, however, no relationship between the BDI and the other indexes. This shows that change in the shipping freight index can be used to predict the volatility in the Korean stock market. This can help investors and policymakers make better decisions.

Price Volatility, Seasonality and Day-of-the Week Effect for Aquacultural Fishes in Korean Fishery Markets (수산물 시장에서의 양식 어류 가격변동성.계절성.요일효과에 관한 연구 - 노량진수산시장의 넙치와 조피볼락을 중심으로 -)

  • Ko, Bong-Hyun
    • The Journal of Fisheries Business Administration
    • /
    • v.40 no.2
    • /
    • pp.49-70
    • /
    • 2009
  • This study proviedes GARCH model(Bollerslev, 1986) to analyze the structural characteristics of price volatility in domestic aquacultural fish market of Korea. As a case study, flatfish and rock-fish are analyzed as major species with relatively high portion in an aspect of production volume among fish captured in Korea. For analyzing, this study uses daily market data (dating from Jan 1 2000 to June 30, 2008) published by the Noryangjin Fisheries Wholesale Market which is located in Seoul of Korea. This study performs normality test on trading volume and price volatility of flatfish and rock-fish as an advanced empirical approach. The normality test adopted is Jarque-Bera test statistic. As a result, first, a null hypothesis that "an empirical distribution follows normal distribution" was rejected in both fishes. The distribution of daily market data of them were not only biased toward positive(+) direction in terms of kurtosis and skewness, but also characterized by leptokurtic distribution with long right tail. Secondly, serial correlations were found in data on market trading volume and price volatility of two species during very long period. Thirdly, the results of unit root test and ARCH-LM test showed that all data of time series were very stationary and demonstrated effects of ARCH. These statistical characteristics can be explained as a reasonable ground for supporting the fitness of GARCH model in order to estimate conditional variances that reveal price volatility in empirical analysis. From empirical data analysis above, this study drew the following conclusions. First of all, from an empirical analysis on potential effects of seasonality and the day of week on price volatility of aquacultural fish, Monday effects were found in both species and Thursday and Friday effects were also found in flatfish. This indicates that Monday is effective in expanding price volatility of aquacultural fish market and also Monday has higher effects upon the price volatility of fish than other days of week have since it has more new information for weekend. Secondly, the empirical analysis led to a common conclusion that there was very high price volatility of flatfish and rock-fish. This points out that the persistency parameter($\lambda$), an index of possibility for current volatility to sustain similarly in the future, was higher than 0.8-equivalently nearly to 1-in both flatfish and rock-fish, which presents volatility clustering. Also, this study estimated and compared and model that hypothesized normal distributions in order to determine fitness of respective models. As a result, the fitness of GARCH(1, 1)-t model was better than model where the distribution of error term was hypothesized through-distribution due to characteristics of fat-tailed distribution, was also better than model, as described in the results of basic statistic analysis. In conclusion, this study has an important mean in that it was introduced firstly in Korea to investigate in price volatility of Korean aquacultural fishery products, although there was partially a limited of official statistic data. Therefore, it is expected that the results of this study will be useful as a reference material for making and assessing governmental policies. Also, it is looked forward that the results will be helpful to build a fishery business plan as and aspect of producer, and also to take timely measures to potential price fluctuations of fishery products in market. Hence, it is advisable that further studies related to such price volatility in fishery market will extend and evolve into a wider variety of articles and issues in near future.

  • PDF

The Cross-Sectional Dispersion of Housing and Business Cycle (경기변동과 주택형태별 수익률에 관한 연구)

  • Kim, Jong-Kwon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.04a
    • /
    • pp.455-475
    • /
    • 2009
  • According to the returns of Housing and business cycle over the period 1992 to 2007, it is a measure of the total volatility faced by investors in Housing properties. First, it isn't a distinct difference from business cycle contrary to U.S. Second, the rise of purchase price in total apartments moves up the consumer price index. According to the cross-sectional dispersion of returns and growth in net operating income (NOI) of apartments, industrial, retail and office properties using panel data for U.S. metropolitan areas over the period 1986 to 2002, it is a measure of the total volatility faced by investors in commercial real estate. To the extent that most of that volatility is difficult to diversify, cross-sectional dispersion may be an appropriate measure of risk.

  • PDF

Modeling and Forecasting Saudi Stock Market Volatility Using Wavelet Methods

  • ALSHAMMARI, Tariq S.;ISMAIL, Mohd T.;AL-WADI, Sadam;SALEH, Mohammad H.;JABER, Jamil J.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.83-93
    • /
    • 2020
  • This empirical research aims to modeling and improving the forecasting accuracy of the volatility pattern by employing the Saudi Arabia stock market (Tadawul)by studying daily closed price index data from October 2011 to December 2019 with a number of observations being 2048. In order to achieve significant results, this study employs many mathematical functions which are non-linear spectral model Maximum overlapping Discrete Wavelet Transform (MODWT) based on the best localized function (Bl14), autoregressive integrated moving average (ARIMA) model and generalized autoregressive conditional heteroskedasticity (GARCH) models. Therefore, the major findings of this study show that all the previous events during the mentioned period of time will be explained and a new forecasting model will be suggested by combining the best MODWT function (Bl14 function) and the fitted GARCH model. Therefore, the results show that the ability of MODWT in decomposition the stock market data, highlighting the significant events which have the most highly volatile data and improving the forecasting accuracy will be showed based on some mathematical criteria such as Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Root Means Squared Error (RMSE), Akaike information criterion. These results will be implemented using MATLAB software and R- software.

A study on the information effect of property market (실물자산시장에서의 정보효과에 관한 연구)

  • Ryu, HyunWook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7672-7676
    • /
    • 2015
  • This study examines the dynamic relations between housing price and trading volume in a set of apartment markets in Republic of Korea to explore the informational role of trading volume in predicting the price volatility. Using monthly index data, EGARCH model is utilized to test for volume effect. To estimate the EGARCH-based volatility, two different sets of region are applied for the monthly return. Strong evidence has been found towards housing turnover leading price volatility, this supports previous studies on financial sector(s). These findings also support that trading volume in the housing market contains information on investor sentiment which, in turn, has a valuation effect on the price.

Do Islamic Stock Markets Diversify the Financial Uncertainty Risk? Evidence from Selected Islamic Countries

  • AZIZ, Tariq;MARWAT, Jahanzeb;ZEESHAN, Asma;PARACHA, Yaser;AL-HADDAD, Lara
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.31-38
    • /
    • 2021
  • The study investigates the diversification behavior of Islamic stocks against US financial uncertainty. Considering limitations found in the literature, a comprehensive index of financial uncertainty (FU) is used, developed by Jurado, Ludvigson, and Ng (2015). The empirical analysis uses monthly data from four Islamic markets - Saudi Arabia, Malaysia, Indonesia, and Turkey - for the period from January 2010 to September 2019. Results of the bivariate EGARCH models show that Islamic stocks can be used for diversification purpose against the financial uncertainty of the US because the volatility of US uncertainty does not propagate in the Islamic stock markets. Moreover, findings show that the spillover effect of financial uncertainty varies with the FU forecast horizon. The spillover effect of FU increases with an increase in the FU forecast horizon and becomes significant over 3-month and 12-month periods in the case of Saudi Arabia. The current volatility of Islamic stock returns is independent of the size of shocks in past volatility. The leverage effect and asymmetry have been found in Saudi Arabia and Malaysia. The findings validate the arguments of the literature that Islamic markets are resilient facing uncertainties and perform well during crisis periods. The findings are important for investors in making better portfolio decisions.