• Title/Summary/Keyword: Volatility Index

Search Result 190, Processing Time 0.021 seconds

The Intraday Lead-Lag Relationships between the Stock Index and the Stock Index Futures Market in Korea and China (한국과 중국의 현물시장과 주가지수선물시장간의 선-후행관계에 관한 연구)

  • Seo, Sang-Gu
    • Management & Information Systems Review
    • /
    • v.32 no.4
    • /
    • pp.189-207
    • /
    • 2013
  • Using high-frequency data for 2 years, this study investigates intraday lead-lag relationship between stock index and stock index futures markets in Korea and China. We found that there are some differences in price discovery and volatility transmission between Korea and China after the stock index futures markets was introduced. Following Stoll-Whaley(1990) and Chan(1992), the multiple regression is estimated to examine the lead-lag patterns between the two markets by Newey-West's(1987) heteroskedasticity and autocorrelation consistent covariance matrix(HAC matrix). Empirical results of KOSPI 200 shows that the futures market leads the cash market and weak evidence that the cash market leads the futures market. New market information disseminates in the futures market before the stock market with index arbitrageurs then stepping in quickly to bring the cost-of-carry relation back into alignment. The regression tests for the conditional volatility which is estimated using EGARCH model do not show that there is a clear pattern of the futures market leading the stock market in terms of the volatility even though controlling nonsynchronous trading effects. This implies that information in price innovations that originate in the futures market is transmitted to the volatility of the cash market. Empirical results of CSI 300 shows that the cash market is found to play a more dominant role in the price discovery process after the Chinese index started a sharp decline immediately after the stock index futures were introduced. The new stock index futures markets does not function well in its price discovery performance at its infancy stage, apparently due to high barriers to entry into this emerging futures markets. Based on EGAECH model, the results uncover strong bi-directional dependence in the intraday volatility of both markets.

  • PDF

Comparison of the Korean and US Stock Markets Using Continuous-time Stochastic Volatility Models

  • CHOI, SEUNGMOON
    • KDI Journal of Economic Policy
    • /
    • v.40 no.4
    • /
    • pp.1-22
    • /
    • 2018
  • We estimate three continuous-time stochastic volatility models following the approach by Aït-Sahalia and Kimmel (2007) to compare the Korean and US stock markets. To do this, the Heston, GARCH, and CEV models are applied to the KOSPI 200 and S&P 500 Index. For the latent volatility variable, we generate and use the integrated volatility proxy using the implied volatility of short-dated at-the-money option prices. We conduct MLE in order to estimate the parameters of the stochastic volatility models. To do this we need the transition probability density function (TPDF), but the true TPDF is not available for any of the models in this paper. Therefore, the TPDFs are approximated using the irreducible method introduced in Aït-Sahalia (2008). Among three stochastic volatility models, the Heston model and the CEV model are found to be best for the Korean and US stock markets, respectively. There exist relatively strong leverage effects in both countries. Despite the fact that the long-run mean level of the integrated volatility proxy (IV) was not statistically significant in either market, the speeds of the mean reversion parameters are statistically significant and meaningful in both markets. The IV is found to return to its long-run mean value more rapidly in Korea than in the US. All parameters related to the volatility function of the IV are statistically significant. Although the volatility of the IV is more elastic in the US stock market, the volatility itself is greater in Korea than in the US over the range of the observed IV.

A Study on Automated Stock Trading based on Volatility Strategy and Fear & Greed Index in U.S. Stock Market (미국주식 매매의 변동성 전략과 Fear & Greed 지수를 기반한 주식 자동매매 연구)

  • Sunghyuck Hong
    • Advanced Industrial SCIence
    • /
    • v.2 no.3
    • /
    • pp.22-28
    • /
    • 2023
  • In this study, we conducted research on the automated trading of U.S. stocks through a volatility strategy using the Fear and Greed index. Volatility in the stock market is a common phenomenon that can lead to fluctuations in stock prices. Investors can capitalize on this volatility by implementing a strategy based on it, involving the buying and selling of stocks based on their expected level of volatility. The goal of this thesis is to investigate the effectiveness of the volatility strategy in generating profits in the stock market.This study employs a quantitative research methodology using secondary data from the stock market. The dataset comprises daily stock prices and daily volatility measures for the S&P 500 index stocks. Over a five-year period spanning from 2016 to 2020, the stocks were listed on the New York Stock Exchange (NYSE). The strategy involves purchasing stocks from the low volatility group and selling stocks from the high volatility group. The results indicate that the volatility strategy yields positive returns, with an average annual return of 9.2%, compared to the benchmark return of 7.5% for the sample period. Furthermore, the findings demonstrate that the strategy outperforms the benchmark return in four out of the five years within the sample period. Particularly noteworthy is the strategy's performance during periods of high market volatility, such as the COVID-19 pandemic in 2020, where it generated a return of 14.6%, as opposed to the benchmark return of 5.5%.

Choice of weights in a hybrid volatility based on high-frequency realized volatility (고빈도 금융 시계열 실현 변동성을 이용한 가중 융합 변동성의 가중치 선택)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.505-512
    • /
    • 2016
  • The paper is concerned with high frequency financial time series. A weighted hybrid volatility is suggested to compute daily volatilities based on high frequency data. Various realized volatility (RV) computations are reviewed and the weights are chosen by minimizing the differences between the hybrid volatility and the realized volatility. A high frequency time series of KOSPI200 index is illustrated via QLIKE and Theil-U statistics.

Volatility Spillover Effects between BDI with CCFI and SCFI Shipping Freight Indices (BDI와 CCFI 및 BDI와 SCFI 운임지수 사이의 변동성 파급 효과)

  • Meng-Hua Li;Sok-Tae Kim
    • Korea Trade Review
    • /
    • v.48 no.1
    • /
    • pp.127-163
    • /
    • 2023
  • The objective of this study is to investigate the volatility spillover effects among BDI, CCFI and SCFI. This paper will divide the empirical analysis section into two periods to analyze and compare the differences in volatility spillover effect between shipping freight indices before and after the outbreak of COVID-19 separately. First, in order to compare the mean spillover impact and index lead-lag correlations in BDI and CCFI indices, along with BDI and SCFI indices before and after COVID-19, the co-integration analysis and the test of Granger causality built on the VAR model were utilized. Second, the impulse response and variance decomposition are employed in this work to investigate how the shipping freight index responds to shocks experienced by itself and other freight indices in a short period. Before the COVID-19 epidemic, the results demonstrated that the BDI freight index is the Granger cause of the variable CCFI freight index. But the BDI and CCFI freight indices have no apparent lead-lag relationships after COVID-19, and this empirical result echoes the cointegration test result. After the COVID-19 epidemic, the SCFI index leads the BDI index. This study employs the VAR-BEKK-GARCH joint model to explore the volatility spillover results between dry bulk and container transport markets before and after COVID-19. The empirical results demonstrate that after COVID-19, fluctuations in the BDI index still affect the CCFI index in the maritime market. However, there is no proof of a volatility spillover relationship between the BDI and SCFI after the COVID-19 epidemic. This study will provide an insight into the volatility relationship among BDI, CCFI and SCFI before and after the the COVID-19 epidemic occurred.

Net Buying Ratios by Trader Types and Volatility in Korea's Financial Markets (투자자별 순매수율과 변동성: 한국 금융시장의 사례)

  • Yoo, Shiyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.189-195
    • /
    • 2014
  • In this research, we investigate the relationship between volatility and the trading volumes of trader types in the KOSPI 200 index stock market, futures market, and options market. Three types of investors are considered: individual, institutional, and foreign investors. The empirical results show that the volatility of the stock market and futures market are affected by the transaction information from another market. This means that there exists the cross-market effect of trading volume to explain volatility. It turns out that the option market volatility is not explained by any trading volume of trader types. This is because the option market volatility, VKOSPI, is the volatility index that reflects traders' expectation on one month ahead underlying volatility. Third, individual investors tend to increase volatilities, whereas institutions and foreign investors tend to stabilize volatilities. These results can be used in the areas of investment strategies, risk management, and financial market stability.

Estimation of Volatility of Korea Stock Price Index Using Winbugs (Winbugs를 이용한 우리나라 주가지수의 변동성에 대한 추정)

  • Kim, Hyoung Min;Chang, In Hong;Lee, Seung Woo
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.121-129
    • /
    • 2011
  • The purpose of this paper is to estimate the fluctuation of an earning rate and risk management using the price index of Korea stocks. After an observation of conception of fluctuation, we can show volatility clustering and fluctuation phenomenon in the Korea stock price index using GARCH model with heteroscedasticity. In addition, the effects of fluctuation on the time-series was evaluated, which showed the heteroscedasticity. MCMC method and Winbugs as Bayesian computation were used for analysis.

Information Spillover Effects from Macroeconomic Variables to Hotel·Leisure Stock Index (거시경제변수의 호텔·레저 주가지수에 대한 정보이전효과에 관한 연구)

  • Kim, Soo-Kyung;Yu, Seo-Young;Byun, Youngtae
    • Culinary science and hospitality research
    • /
    • v.22 no.3
    • /
    • pp.212-223
    • /
    • 2016
  • The purpose of this study is to verify information spillover effects using returns of macroeconomic variables and hotel leisure stock index daily data from January 4, 2000 to December 30, 2015. The findings and implications of the research can be summarized as follows. First, based on time-varying AR(1)-GARCH(1,1) models no evidence of statistically significant conditional mean and volatility spillover effects from returns of macroeconomic variables on the hotel leisure stock index was observed. In addition, no evidence of price volatility spillover from macroeconomic variables on the hotel leisure market was observed. Second, it was discovered that there exists a significantly negative relationship between the return of ER and hotel leisure stock prices, but a positive relationship between the KOSPI and hotel leisure stock prices. Finally, the study also found that was a significantly positive relationship between the volatility of DUB and hotel leisure market, and an adversely negative relationship between the volatility of ER and hotel leisure market. The results of this study are expected to contribute by providing useful information for investment strategies, as well as for risk management for investors and managers.

Corruption and Government Expenditure Volatility (부패와 정부지출의 변동성)

  • Lim, Eung-Soon;Hwang, Jin-Young;Song, In-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.188-194
    • /
    • 2011
  • Using cross-section of 83 countries, this paper empirically examines the relationship between corruption and government expenditure volatility. A country's corruption is denoted by either control of corruption, compiled by Kaufmann et al. (2008), or corruption perceptions index, provided by Transparency International. In addition, a country's government expenditure volatility is measured by the standard deviation of the change ratio of government expenditure from 1990 to 2005. Regression results suggest that a country's control of corruption and corruption perceptions index (higher ratings signifying more transparency) are significantly and negatively associated with the volatility of government expenditure. However, the estimated coefficients of corruption perceptions index show somewhat reduced statistical significances. The results are robust to the sub-sample of countries excluding European OECD countries. Therefore, the regression results suggest corrupt bureaucrats are able to periodically change economic rules of the game, which results in the possibility of a higher variance in government expenditure.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.