• Title/Summary/Keyword: Volatile organic compounds (VOCs)

Search Result 686, Processing Time 0.029 seconds

Removal of VOCs and H2S from Waste Gas with Biotrickling Filter (생물살수여과법을 이용한 공기중 VOC 및 H2S 제거)

  • Kim, Kyoung-Ok;Kim, Yong-Je;Won, Yang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.519-525
    • /
    • 2008
  • Biodegradation of toluene, styrene and hydrogen sulfide as model compounds of volatile organic compounds and odor from waste gas was investigated experimentally in a biotrickling filter. This study focussed on the description of experimental results with regard to operating conditions. The effect of varying $H_2S$ load rate and inlet concentration was investigated under autotropic and mixotropic environmental conditions. The $H_2S$ removal efficiencies of greater than 99% were achieved at $H_2S$ loads below $10g/m^3{\cdot}hr$ for each environment. It was observed that the maximum elimination capacity of mixotrophic filter was achieved a little greater than the one of autotrophic filter. The biofiltration of toluene and styrene in trickling bed was examined under different gas flow rates, load rates, and inlet concentrations. Below $40g/m^3{\cdot}hr$ of toluene loading, the elimination capacity and loading were identical and it was completely destroyed. In high loading of toluene, the biotrickling filter was operated at its maximum elimination capacity. In the inlet concentration of 0.2, 0.5, and $1.0g/m^3$, the maximum elimination capacity of toluene showed 40, 45, and $60g/m^3{\cdot}hr$, respectively. After a short adaptation period, it was demonstrated that the results of styrene in originally toluene adapted bioreactor was similar with the ones of toluene. However, the performance of filer for styrene is generally a little lower than for toluene. The operating conditions (including liquid flow rate etc.) allowing the highest removal efficiency should be determined experimentally for each specific case.

Exploration of an Area with High Concentrations of Particulate Matter and Biomonitoring Survey of Volatile Organic Compounds among the Residents (부산 내 미세먼지 고농도 지역 탐색 및 체내 휘발성유기화합물 바이오모니터링 조사)

  • Hyunji Ju;Seungho Lee;Jae-Hee Min;Yong-Sik Hwang;Young-Seoub Hong
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.344-352
    • /
    • 2023
  • Background: With its developed port and related industries, the concentration of fine dust is high in Busan compared to other cities in South Korea. Many studies have reported the health effects of fine dust, but there has been a lack of information regarding concentrations of volatile organic compounds among those who exposed to high levels of fine dust. Objectives: This study aimed to define an area with high concentrations of particulate matter and perform biomonitoring surveys among the residents of the area. Methods: Air quality data was collected and the mean level of each district in Busan was derived. We then defined the area with the highest concentrations of PM10 as a target site. Urine samples were collected from the 400 participants and analyzed for VOCs metabolites - trans,trans-Muconic Acid (t,t-MA) and N-AcetylS-(benzyl)-L-cysteine (BMA). Interviews were conducted by trained investigators to examine demographic information. The levels of t,t-MA and BMA were compared with representative South Korean population data (Korean National Environmental Health Survey). The association of the VOC metabolites and fine dust were analyzed by general linear regression analysis. Results: The mean of PM10 in the target site was 42.50 ㎍/m3 from 2018 to 2020. Among the 400 participants in the target site, 74.8% were female and the average age of the participants was 66 years. The geometric mean of t,t-MA was 71.15 ㎍/g creatinine and the BMA was 7.00 ㎍/g creatinine among the residents. The levels were higher than the geometric mean from the 4th KoNEHS. The levels of t,t-MA showed significance in BMI, smoking status, and household income. BMA showed significance in gender and age. Conclusions: Compared to the general population of South Korea, the target site's residents had higher biomonitoring levels. Based on this study, continuous screening for high risk areas, including the target site, and biomonitoring of the residents are required.

Biofiltration of Gaseous Toluene Using Activated Carbon Containing Polyurethane Foam Media (활성탄 함유 폴리우레탄 담체를 사용하는 바이오필터에 의한 가스상 톨루엔의 처리)

  • Amarsanaa Altangerel;Shin Won-Sik;Choi Jeong-Hak;Choi Sang-June
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.513-525
    • /
    • 2006
  • In recent decades, biofiltration has been widely accepted for the treatment of contaminated air stream containing low concentration of odorous compounds or volatile organic compounds (VOCs). In this study, conventional biofilters packed with flexible synthetic polyurethane (PU) foam carriers were operated to remove toluene from a contaminated air stream. PU foams containing various amounts of pulverized activated carbon (PAC) were synthesized for the biofilter media and tested for toluene removal. Four biofilter columns were operated for 60 days to remove gaseous toluene from a contaminated air stream. During the biofiltration experiment, inlet toluene concentration was in the range of 0-150 ppm and EBRT (i.e., empty bed residence time) was kept at 26-42 seconds. Pressure drop of the biofilter bed was less than 3 mm $H_2O/m$ filter bed. The maximum removal capacity of toluene in the biofilters packed with PU-PAC foam was in the order of column II (PAC=7.08%) > column III (PAC=8.97%) > column I (PAC=4.95%) > column IV (PAC=13.52%), while the complete removal capacity was in the order of column II > column I > column III > column IV. The better biofiltration performance in column II was attributed to higher porosity providing favorable conditions for microbial growth. The results of biodegradation kinetic analysis showed that PU-PAC foam with 7.08% of PAC content had higher maximum removal rate ($V_m$=14.99 g toluene/kg dry material/day) than the other PU-PAC foams. In overall, the performance of biofiltration might be affected by the structure and physicochemical properties of PU foam induced by PAC content.

In-Vehicle Levels of Naphthalene and Monocyclic Aromatic Compounds According to Vehicle Type

  • Jo, Wan-Kuen;Lee, Jong-Hyo
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.180-185
    • /
    • 2009
  • Only limited information is available as regards to the exposure levels of naphthalene (polycyclic aromatic hydrocarbons, PAHs) and monocyclic aromatic hydrocarbons(MAHs) in the interiors of diesel-fueled passenger cars, while many studies investigated the exposure levels of various volatile organic compounds(VOCs) in the interiors of gasoline-fueled passenger cars or public buses. Present study was performed to supplement this deficiency by measuring naphthalene (as a representative of PAHs) and MAHs levels inside five diesel-fueled and five gasoline-fueled passenger cars while morning and evening commuting on real roadways. Each car was surveyed five times on different sampling days. The in-vehicle naphthalene levels were higher for the diesel-fueled cars as compared to gasoline-fueled cars, whereas the results were reversed for the in-vehicle MAH levels. The median cabin levels of diesel-fueled cars were 1.3, 7, 13, 4, and 6 ${\mu}g/m^3$ for naphthalene, benzene, toluene, ethyl benzene, and m,pxylene, respectively. With respect to gasoline-fueled cars, their respective levels were 0.7, 11, 21, 7, and 9 ${\mu}g/m^3$ . The median MAHs concentration ratios of gasoline-fueled cars to diesel-fueled cars ranged from 1.50 to 1.75, while the median naphthalene concentration ratio was estimated to be 0.54. In addition, there was no significant difference of both naphthalene and MAHs between the diesel-fueled cars, but the in-vehicle levels were significantly different between gasoline-fueled cars. The concentration levels of both naphthalene and MAHs were higher in the passenger cars than other non-industrial microenvironments. Consequently, it was confirmed that the cabins of both diesel-fueled and gasoline-fueled passenger cars are an important microenvironment associated with the exposure to naphthalene and MAHs.

Evaluation of volatile organic compounds emitted from door-trim armrest using micro chamber and 20 L static chamber (마이크로 챔버와 20 L static chamber를 이용한 도어트림 암레스트로부터 방출되는 휘발성 유기화합물 평가)

  • Lee, Ik-Hee;Yoo, Ji-Ho;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.290-297
    • /
    • 2011
  • In present, evaluation method for car cabin air quality has been developed in ISO, China, Japan. Also The management standard for new produced car has been applied since 1, July, 2010. To manage car cabin air quality, It is important to evaluate VOC emitted from interior material. In this study, complete component of door trim armrest was evaluated in accordance with ISO 12219-5, cut component was evaluated in accordance with ISO 12219-3. The vapour gas was collected with stainless tube packed with Tenax TA and analyzed with TD-GC/MS. It was confirmed that emission rate of each compounds was difficult in each evaluation method. As a result, to evaluating each components composing door trim armrest, main sources of emitting VOCs in door trim armrest were PP substrate and adhesive.

Exposure Characteristics for Chemical Substances and Work Environmental Management in the Semiconductor Assembly Process (반도체 조립공정의 화학물질 노출특성 및 작업환경관리)

  • Park, Seung-Hyun;Park, Hae Dong;Shin, In Jae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.272-280
    • /
    • 2014
  • Objectives: The purpose of this study was to evaluate the characteristics of worker exposure to hazardous chemical substances and propose the direction of work environment management for protecting worker's health in the semiconductor assembly process. Methods: Four assembly lines at two semiconductor manufacturing companies were selected for this study. We investigated the types of chemicals that were used and generated during the assembly process, and evaluated the workers' exposure levels to hazardous chemicals such as benzene and formaldehyde and the current work environment management in the semiconductor assembly process. Results: Most of the chemicals used at the assembly process are complex mixtures with high molecular weight such as adhesives and epoxy molding compounds(EMCs). These complex mixtures are stable when they are used at room temperature. However workers can be exposed to volatile organic compounds(VOCs) such as benzene and formaldehyde when they are used at high temperature over $100^{\circ}C$. The concentration levels of benzene and formaldehyde in chip molding process were higher than other processes. The reason was that by-products were generated during the mold process due to thermal decomposition of EMC and machine cleaner at the process temperature($180^{\circ}C$). Conclusions: Most of the employees working at semiconductor assembly process are exposed directly or indirectly to various chemicals. Although the concentration levels are very lower than occupational exposure limits, workers can be exposed to carcinogens such as benzene and formaldehyde. Therefore, workers employed in the semiconductor assembly process should be informed of these exposure characteristics.

Ecological Risk Assessment based on Watershed System Assimilative Capacity in take Texoma, Texas-Oklahoma, USA (유역시스템 정화력을 고려한 생태위해성평가 사례연구: Lake Texoma Watershed (TX&OK, USA)를 대상으로)

  • An, Youn-Joo;Donald H. Kampbell;Guy W. Sewell
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.27-27
    • /
    • 2003
  • Lake Texoma is located on the border of southern Oklahoma and northern Texas. It has 93,000 surface acres, and is a focus of the recreation, and farming industries in the region. There are potential stressors around the Lake Texoma watershed that may cause adverse ecological effects in the lake. System assimilative capacity (SAC) is the ability of abiotic and biotic processes to atteuniate the stressors. SAC Exceeded indicates potential of occuring adverse eco-effects. A number of representative chemical release sites and stressor sources in the surrounding watershed were characterized, and several impact sites having stressors sources, such as being near agriculture, landfills, housing areas, oil production fields and heavy use recreational activity, were selected for surface water, sediment, and groundwater monitoring. A paired reference site, having similar physical characteristics as its impact site, was also chosen based on its proximity to the impact site. Lake water samples were collected at locations identified as marina entrance, gasoline filling station, and boat dock at five marinas selected on Lake Texoma from September 1999 to December 2001. Paired water and sediment samples were also collected. Groundwater samples were collected at about 70 producing monitoring wells. Water quality parameters measured were inorganics (nitrate, nitrite, orthophosphate, ammonia, sulfate, and chloride), dissolved methane, total organic carbon (TOC) (or DOC), volatile organic compounds (VOCs) such as methyl tert-butyl ether (MTBE) and BTEX, and a suite of metals. Biotic communities were evaluated at impact and reference sites. Five basic components were measured; two terrestirial components (plants and bird comminitires) and three aquatic components (benthic inverbrates, litteral-zone fishes, ecosystem attribures). Potential impacts to these comminites were evaluated.

  • PDF

Removal of Volatile Organic Compounds from Water Using PU/PDMS-PTFE Composite Membranes by Vapor Permeation Separation Process (PU/PDMS-PTFE 복합막을 이용한 증기투과공정에 의한 물로부터 휘발성 유기화합물 제거)

  • Rhim Ji Won;Cheon Se Won;Yun Tae Ihl;Shin Hyun Su;Kim Baek Ahm;Chung Rae Ick
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2005
  • Polyurethane-polysiloxanes (PU/PDMS) was synthesized using 4,4'-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD) to overcome the weakness to the organic chemicals. The composite membranes were prepared onto porous poly(tetrafluoroethylene) (PTFE) supports. In vapor permeation experiments, the flux increased with increasing operating temperatures and feed concentrations while the separation factors showed the opposite trend, so-called 'trade-off'. In this study, the effect of the flux on the operating temperatures was not severe since the content of the soft segments is fairly higher than that of the hard segments. The composite membrane type of PU/PDMS maintained high flux and separation factor as well when comparing with the dense type membranes.

A Study on the Air Quality of Indoor Screen Golf in Seoul (수도권 일부지역의 실내 스크린골프장의 공기질 평가)

  • Jo, Ho-Dong;Roh, Jae-Hoon;Kim, Chi-Nyon;Sim, Sang-Hyo;Won, Jong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.192-202
    • /
    • 2010
  • This study aimed to suggest the severity of indoor air pollutants in screen gold arenas which were not sufficiently investigated in Korea up to now and to help users to enjoy golf in more pleasant indoor environment. The indoor environment survey was conducted with 21 screen gold arenas in Seoul from Oct. 28, 2008 to March 13, 2009. Indoor air quality was measured and analyzed in accordance with the Air Pollution Process Test Method specified bu NIOSH(2005). The screen golf arenas are mostly in the underground floors in this study, 4 on the ground floors(19.0%) and 17 in the underground floors(81.0%). In the air in screen golf arenas, the geometric mean of benzene, toluene, ethylbenzene and xylene were 2.92 ${\mu}g/m^3$, 70.34 ${\mu}g/m^3$, 14.00${\mu}g/m^3$ and 31.43 ${\mu}g/m^3$, respectively, which exceeded the exposure limites. Each arena exceeded the exposure limit for one pollutant each. However, styrene didn't exceed the limit as 8.09 ${\mu}g/m^3$. Furthermore, the geometric mean of formaldehyde was 63.11${\mu}g/m^3$ and 7 arenas exceeded the limit. The geometric mean of volatile organic compounds(VOCs) was 428.41${\mu}g/m^3$ and 10 arenas exceeded the limit. For the density distribution of pollutants by location, benzene, toluene, ethylbenzene, xylene, styrene and formaldehyde showed higher density distribution in underground spaces, for which the statistically significant difference was not found. However, PM10 showed the statistically significant difference (p<0.05). In accordance with the analysis on the correlation between the density of pollutants in the screen golf arenas, Pearson correlation coefficient between ethylbenzene and styrene was 0.980, very significant correlation(p<0.01). The correlation coefficients between the density of toluene, ethylbenzene, xylene and styrene and that of VOCs were 0.543, 0.434, 0.451 and 0.459, respectively, which demonstrated the statistically significant difference (p<0.05).

Risk Assessment of Volatile Organic Compounds (VOCs) and Formaldehyde in Korean Public Facilities: Derivation of Health Protection Criteria Levels

  • Kim, Ho-Hyun;Lim, Young-Wook;Shin, Dong-Chun;Sohn, Jong-Ryeul;Yang, Ji-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.121-133
    • /
    • 2011
  • This study suggests criteria to conduct a risk assessment of VOCs and formaldehyde in uncontrolled public facilities. Pollutants and facilities were selected based on two years of monitoring data and exposure scenarios in 573 uncontrolled public facilities, composed of 10 types of public institutions. With the exception of social welfare facilities, lifetime ECRs of formaldehyde and benzene in each facility were higher in employees than in users, except in social welfare facilities. In social welfare facilities, the risk of benzene for users ($1{\times}10^{-5}$) was higher than that of workers ($1{\times}10^{-6}$) because facility users live in the facility 24 hours per day, compared to workers who spend an average of 8 hours per day in the facility. The risk of benzene to workers in restaurants, academies, performance halls, internet cafe and pubs were estimated as high as $1{\times}10^{-4}$ and the risk to workers in the theaters and karaoke bars were recorded as $1{\times}10^{-5}$. Because lifetime ECRs of carcinogens exceeded $1{\times}10^{-4}$ for workers and users in most facilities, risk management of formaldehyde and benzene in these facilities is necessary. Although HQs of toluene and xylenes did not exceed 1.0, their HQs did exceed 0.1 in some facilities, so they were evaluated as potentially harmful materials. Additionally, criteria for health protection in IAQ by facility are suggested at $60-100\;{\mu}g/m^3$ for formaldehyde, $400-500\;{\mu}g/m^3$ for TVOCs, $10-20\;{\mu}g/m^3$ for benzene, $150-170\;{\mu}g/m^3$ for toluene and $100\;{\mu}g/m^3$ for xylenes, based on the survey on IAQ and HRA methodology. The excess rates of IAQ to health protection criteria in all facilities were 16% for formaldehyde, 8% for TVOCs and benzene, 9% for toulene, and 5% for xylenes.