Removal of Volatile Organic Compounds from Water Using PU/PDMS-PTFE Composite Membranes by Vapor Permeation Separation Process

PU/PDMS-PTFE 복합막을 이용한 증기투과공정에 의한 물로부터 휘발성 유기화합물 제거

  • Published : 2005.03.01

Abstract

Polyurethane-polysiloxanes (PU/PDMS) was synthesized using 4,4'-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD) to overcome the weakness to the organic chemicals. The composite membranes were prepared onto porous poly(tetrafluoroethylene) (PTFE) supports. In vapor permeation experiments, the flux increased with increasing operating temperatures and feed concentrations while the separation factors showed the opposite trend, so-called 'trade-off'. In this study, the effect of the flux on the operating temperatures was not severe since the content of the soft segments is fairly higher than that of the hard segments. The composite membrane type of PU/PDMS maintained high flux and separation factor as well when comparing with the dense type membranes.

유기증기에 대한 PDMS의 단점을 보완하기 위해 4,4'-diphenylmethane diisocyanate (MDI)와 1,4-butanediol(BD)를 이용하여 poly(dimethylsiloxane)를 기초로 한 polyurethane-polysiloxanes (PU/PDMS)를 합성하였다. 그리고 poly(tetrafluoroethylene) (PTFE)를 다공성 지지체로 이용하여 복합막을 제조하여 SEM 분석으로 코팅층의 존재와 두께를 확인하였다. 증기투과실험에서 투과온도와 feed의 농도가 증가할수록 flux는 점차 증가하였고, separation factor는 이와 반대로 점차 감소하는 'trade-off'현상을 보였다. 본 연구에서의 PU/PDMS는 soft segment의 함량보다는 비교적 hard segment의 함량이 높기 때문에 투과온도의 증가에 따른 영향이 크지 않았던 것으로 사료된다. PU/PDMS막은 VOCs와 상대적으로 높은 친화도를 가지고 있기 때문에 PU/PDMS 균질막과 비교하여 복합막의 형태에서도 향상된 flux와 높은 separation factor를 나타내었다.

Keywords

References

  1. 환경부 홈페이지, http://www.me.go.kr/2005.2.1
  2. 한국과학기술정보연구원, 'VOC 처리기술 개발동향' (2003)
  3. 환경부, '휘발성 유기화합물 관리현황 및 저감 계획' (2001)
  4. J. S. Cha, 'Membrane Vapor Permeation', Membrane Journal., 7(3), 111 (1997)
  5. C. Burger and F. H. Kreuzer, 'Polysiloxanes and polymers containing siloxane groups', in: H. R. Kricheldorf (Ed.), Silicon in Polymer Synthesis, Springer, London, pp. 113-213 (1996)
  6. K. H. Hsieh, C. C. Tsai, and S. M. Tseng, 'Vapor and gas permeability of polyurethane membranes. Part I: structure property relationship', J. Membr. Sci., 49, 341 (1990)
  7. P. M. Knight and D. J. Lyman, 'Gas permeability of various block copolyether-urethanes', J. Membr. Sci., 17, 245 (1984)
  8. G. Galland and T. M. Lam, 'Permeability and diffusion of gases in segmented polyurethanes: structure-property relations', J. Appl. Polym. Sci., 50, 1041 (1993)
  9. J. S. McBride, T. A. Massaro, and S. L. Cooper, 'Diffusion of gases through polyurethane block polymers', J. Appl. Polym. Sci., 23, 201 (1979)
  10. M. Pegorado, L. Zanderighi, A. Penati, F. Severini, F. Bianchi, N. Cao, R. Sisto, and C. Valentini, 'Polyurethane membranes from polyether and polyester diols for gas fractionation', J. Appl. Polym. Sci., 43, 687 (1991)
  11. Stelian Vlad, Angelica Vlad, and Stefan Opera, 'Interpenetrating polymer networks based on polyurethane and polysiloxane', European Polym. J., 38, 829 (2002)
  12. A. Stanciu, A. Arnei, D. Timpu, A. Ioanid, C. loan, and V. Bulacovschi, 'Polyurethane/polydimethylsiloxane segmented copolymer', European Polym. J., 35, 1959 (1999)
  13. H. B. Park and Y. M. Lee, 'Separation of toluene/ nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments', J. Membr. Sci, 197, 283 (2002)
  14. H. B. Park, C. K. Kim, and Y. M. Lee, 'Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes', J. Membr. Sci, 204, 257 (2002)
  15. S. Y. Nam, Y. J. Kim, S. W. Cheon, and J. W. Rhim, 'Removal of VOCs from water by vapor permeation through PU/PDMS membrane', Membrane J., 14(2), 157 (2004)